World Wide Web

, Volume 14, Issue 2, pp 187–215 | Cite as

A probabilistic rating inference framework for mining user preferences from reviews

  • Cane Wing-ki Leung
  • Stephen Chi-fai Chan
  • Fu-lai Chung
  • Grace Ngai


We propose a novel Probabilistic Rating infErence Framework, known as Pref, for mining user preferences from reviews and then mapping such preferences onto numerical rating scales. Pref applies existing linguistic processing techniques to extract opinion words and product features from reviews. It then estimates the sentimental orientations (SO) and strength of the opinion words using our proposed relative-frequency-based method. This method allows semantically similar words to have different SO, thereby addresses a major limitation of existing methods. Pref takes the intuitive relationships between class labels, which are scalar ratings, into consideration when assigning ratings to reviews. Empirical results validated the effectiveness of Pref against several related algorithms, and suggest that Pref can produce reasonably good results using a small training corpus. We also describe a useful application of Pref as a rating inference framework. Rating inference transforms user preferences described as natural language texts into numerical rating scales. This allows Collaborative Filtering (CF) algorithms, which operate mostly on databases of scalar ratings, to utilize textual reviews as an additional source of user preferences. We integrated Pref with a classical CF algorithm, and empirically demonstrated the advantages of using rating inference to augment ratings for CF.


sentiment analysis text mining collaborative filtering recommender systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adomavicius, G., Kwon, Y.: New recommendation techniques for multicriteria rating systems. IEEE Intell. Syst. 22(3), 48–55 (2007)CrossRefGoogle Scholar
  2. 2.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: ACM SIGMOD International Conference on Management of Data, pp. 207–216 (1993)Google Scholar
  3. 3.
    Breese, J. S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: 14th Conference on Uncertainty in Artificial Intelligence, pp. 43–52 (1998)Google Scholar
  4. 4.
    Bruce, R., Wiebe, J.: Recognizing subjectivity: a case study of manual tagging. Nat. Lang. Eng., 5(2), 187–205 (1999)CrossRefGoogle Scholar
  5. 5.
    Chesley, P., Vincent, B., Xu, L., Srihari, R.: Using verbs and adjectives to automatically classify blog sentiment. In: Proc. of the Spring Symposia on Computational Approaches to Analyzing Weblogs (2006)Google Scholar
  6. 6.
    Das, S., Chen, M.: Yahoo! for Amazon: extracting market sentiment from stock message boards. In: Asia Pacific Finance Association Annual Conference (2001)Google Scholar
  7. 7.
    Dave, K., Lawrence, S., Pennock, D.M.: Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: 12th International World Wide Web Conference, pp. 519–528 (2003)Google Scholar
  8. 8.
    Esuli, A., Sebastiani, F.: Determining the semantic orientation of terms through gloss classification. In: ACM International Conference on Information and Knowledge Management (CIKM), pp. 617–624 (2005)Google Scholar
  9. 9.
    Esuli, A., Sebastiani, F.: SentiWordNnet: a publicly available lexical resource for opinion mining. In: 5th International Conference on Language Resources and Evaluation (LREC) (2006)Google Scholar
  10. 10.
    Gamon, M., Aue, A., Corston-Oliver, S., Ringger, E.K.: Pulse: mining customer opinions from free text. In: 6th International Symposium on Intelligent Data Analysis, pp. 121–132 (2005)Google Scholar
  11. 11.
    Goldberg, A.B., Zhu, X.: Seeing stars when there aren’t many stars: graph-based semi-supervised learning for sentiment categorization. In: Proc. of the HLT-NAACL Workshop on TextGraphs: Graph-based Algorithms for Natural Language Processing, pp. 45–52 (2006)Google Scholar
  12. 12.
    Hatzivassiloglou, V., McKeown, K.R.: Predicting the semantic orientation of adjectives. In: 8th Conference on European Chapter of the Association for Computational Linguistics, pp. 174–181 (1997)Google Scholar
  13. 13.
    Herlocker, J., Konstan, J., Riedl, J.: An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Inf. Retr. 5, 287–310 (2002)CrossRefGoogle Scholar
  14. 14.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, p. 168–177 (2004)Google Scholar
  15. 15.
    Hu, M., Liu, B.: Mining opinion features in customer reviews. In: 19th National Conference on Artificial Intelligence, pp. 755–760 (2004)Google Scholar
  16. 16.
    Jindal, N., Liu, B.: Identifying comparative sentences in text documents. In: 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 244–251 (2006)Google Scholar
  17. 17.
    Joachims, T.: Making large-scale support vector machine learning practical. In: Scholkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods—Support Vector Learning, pp. 41–56. MIT Press (1999)Google Scholar
  18. 18.
    Kaji, N., Kitsuregawa, M.: Building lexicon for sentiment analysis from massive collection of HTML documents. In: 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 1075–1083 (2007)Google Scholar
  19. 19.
    Kamps, J., Marx, M., Mokken, R.J., de Rijke, M.: Using WordNet to measure semantic orientations of adjectives. In: 4th International Conference on Language Resources and Evaluation (LREC), pp. 1115–1118 (2004)Google Scholar
  20. 20.
    Kim, S.-M., Hovy, E.: Determining the sentiment of opinions. In: Conference on Computational Linguistics, pp. 1367–1373 (2004)Google Scholar
  21. 21.
    Leung, C.W.K., Chan, S.C.F., Chung, F.L.: Integrating collaborative filtering and sentiment analysis: a rating inference approach. In: ECAI 2006 Workshop on Recommender Systems, pp. 62–66 (2006)Google Scholar
  22. 22.
    Leung, C.W.K., Chan, S.C.F., Chung, F.L.: Evaluation of a Rating Inference Approach to Utilizing Textual Reviews for Collaborative Recommendation. Cooperative Internet Computing, World Scientific Publisher (2008)Google Scholar
  23. 23.
    Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on the web. In: 14th International WWW Conference, pp. 342–351 (2005)Google Scholar
  24. 24.
    Liu, H.: MontyLingua: an end-to-end natural language processor with common sense.∼hugo/montylingua/ (2004). Accessed 9 February 2011
  25. 25.
    Liu, J., Yao, J., Wu, G.: Sentiment classification using information extraction technique. In: Advances in Intelligent Data Analysis VI, pp. 216–227 (2005)Google Scholar
  26. 26.
    Manouselis, N., Costopoulou, C.: Analysis and classification of multi-criteria recommender systems. World Wide Web: Internet and Web Information Systems (WWWJ) 10(4), 415–441 (2007)Google Scholar
  27. 27.
    Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Introduction to WordNet: an online lexical database. Int. J. Lexicogr. (Special Issue), 3(4), 235–312 (1990)Google Scholar
  28. 28.
    Mishne, G., Glance, N.: Predicting movie sales from blogger sentiment. In: Spring Symposia on Computational Approaches to Analyzing Weblogs (2006)Google Scholar
  29. 29.
    Okanohara, D., Tsujii, J.: Assigning polarity scores to reviews using machine learning techniques. In: Second International Joint Conference on Natural Language Processing, pp. 314–325 (2005)Google Scholar
  30. 30.
    Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: 42nd Annual Meeting of the Association for Computation Linguistics, pp. 271–278 (2004)Google Scholar
  31. 31.
    Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: 43rd Annual Meeting of the Association for Computation Linguistics, pp. 115–124 (2005)Google Scholar
  32. 32.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Conference on Empirical Methods in Natural Language Processing, pp. 79–86 (2002)Google Scholar
  33. 33.
    Popescu, A., Etzioni, O.: Extracting product features and opinions from reviews. In: Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, pp. 339–346 (2005)Google Scholar
  34. 34.
    Resnick, P., Iacovou, N., Suchak, M., Bergstorm, P., Riedl, J.: GroupLens: an open architecture for collaborative filtering of Netnews. In: ACM 1994 Conference on Computer Supported Cooperative Work, pp. 175–186 (1994)Google Scholar
  35. 35.
    Ricci, F.: Travel recommender systems. IEEE Intell. Syst. 17(6), 55–57 (2002)MathSciNetGoogle Scholar
  36. 36.
    Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res. 5, 101–141 (2004)MathSciNetGoogle Scholar
  37. 37.
    Riloff, E., Wiebe, J.: Learning extraction patterns for subjective expressions. In: Conference on Empirical Methods in Natural Language Processing, pp. 105–112 (2003)Google Scholar
  38. 38.
    Smola, A.J., Scholkopf, B.: A tutorial on support vector regression. Technical Report NC2-TR-1998-030, NeuroCOLT2, Royal Holloway College, University of London (1998)Google Scholar
  39. 39.
    Snyder, B., Barzilay, R.: Multiple aspect ranking using the good grief algorithm. In: Human Language Technologies: The Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 300–307 (2007)Google Scholar
  40. 40.
    Taboada, M., Anthony, C., Voll, K.: Methods for creating semantic orientation dictionaries. In: 5th International Conference on Language Resources and Evaluation (LREC), pp. 427–432 (2006)Google Scholar
  41. 41.
    Thomas, M., Pang, B., Lee, L.: Get out the vote: determining support or opposition from Congressional floor-debate transcripts. In: Conference on Empirical Methods in Natural Language Processing, pp. 327–335 (2006)Google Scholar
  42. 42.
    Turney, P.D.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: 40th Annual Meeting of the Association for Computational Linguistics, pp. 417–424 (2002)Google Scholar
  43. 43.
    Turney, P.D., Littman, M.L.: Measuring praise and criticism: inference of semantic orientation from association. ACM Trans. Inf. Sys. 21(4), 315–346 (2003)CrossRefGoogle Scholar
  44. 44.
    Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer (1995)Google Scholar
  45. 45.
    Wiebe, J., Bruce, R., Bell, M., Martin, M., Wilson, T.: A corpus study of evaluative and speculative language. In: 2nd ACL SIGdial Workshop on Discourse and Dialogue (2001)Google Scholar
  46. 46.
    Wiebe, J., Bruce, R., O’Hara, T.: Development and use of a gold-standard data set for subjectivity classifications. In: 37th Annual Meeting of the Association for Computational Linguistics, pp. 246–253 (1999)Google Scholar
  47. 47.
    Wilson, T., Wiebe, J., Hwa, R.: Just how mad are you? Finding strong and weak opinion clauses. In: 19th National Conference on Artificial Intelligence, pp. 761–769 (2004)Google Scholar
  48. 48.
    Yamanishi, K., Li, H.: Mining open answers in questionnaire data. IEEE Intell. Syst. 17(5), 58–63 (2002)CrossRefGoogle Scholar
  49. 49.
    Yi, J., Nasukawa, T., Bunescu, R., Niblack, W.: Sentiment Analyzer: extracting sentiments about a given topic using natural language processing techniques. In: 3rd IEEE International Conference on Data Mining (ICDM), pp. 427–434 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Cane Wing-ki Leung
    • 1
  • Stephen Chi-fai Chan
    • 2
  • Fu-lai Chung
    • 2
  • Grace Ngai
    • 2
  1. 1.School of Information SystemsSingapore Management UniversitySingaporeSingapore
  2. 2.Department of ComputingThe Hong Kong Polytechnic UniversityHung HomHong Kong

Personalised recommendations