World Wide Web

, Volume 10, Issue 3, pp 279–307 | Cite as

The Effects of XML Compression on SOAP Performance

Article

Abstract

XML is the foundation of the SOAP protocol, and in turn, Web Service communication. This self-descriptive textual format for structured data is renowned to be verbose. This verbosity can cause problems due to communication and processing overhead in resource-constrained environments (e.g., small wireless devices). In this paper, we compare different binary representations of XML documents. To this end, we propose a multifaceted and reusable test suite based on real-world scenarios. Our main result is that only simple XML compression methods are suitable for a wide range of scenarios. While these simple methods do not match the compression ratios of more specialized ones, they are still competitive in most scenarios. We also show that there are scenarios that none of the evaluated methods can deal with efficiently.

Keywords

SOAP XML compression binary XML Web Services performance small wireless devices sensor networks benchmark wireless telephony 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Advanced Risc Machines: An Introduction to Thumb (March 1995)Google Scholar
  2. 2.
    Aho, A., Sethi, R., Ullman, J.: Compilers—Principles, Techniques, and Tools. Addison-Wesley, Reading, MA (1986)Google Scholar
  3. 3.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Networks 38(4), 393–422 (2002)CrossRefGoogle Scholar
  4. 4.
    Berjon, R.: Expway’s position paper on binary infosets. In: Proceedings of the 2003 W3C Workshop on Binary Exchange of XML Information Sets, Santa Clara, CA (September 2003)Google Scholar
  5. 5.
    Binary prefix. http://en.wikipedia.org/wiki/Binary_prefix/ (Visited December 2006)
  6. 6.
    Botts, M.: Sensor Model Language (SensorML) for In-situ and Remote Sensors. OpenGIS Publicly Available Recommendation Paper. http://vast.uah.edu/SensorML/ (June 2007)
  7. 7.
    Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E.: Extensible markup language (XML) 1.0, 2nd edn.. Recommendation REC-xml-20060816 (August 2006)Google Scholar
  8. 8.
    Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In: Proceedings of the 29th International Conference on Very Large Databases (VLDB), Berlin, Germany, pp. 141–152 (May 2003)Google Scholar
  9. 9.
    Bustamante, F.E., Eisenhauer, G., Schwan, K., Widener, P.: Efficient wire formats for high performance computing. In: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing (SC), Dallas, TX (November 2000)Google Scholar
  10. 10.
    Cheney, J.: Compressing XML with multiplexed hierarchical PPM models. In: Proceedings of the IEEE Data Compression Conference (DCC), Snowbird, UT, pp. 163–172 (March 2001)Google Scholar
  11. 11.
    Chinnici, R., Gudgin, M., Moreau, J.-J., Weerawarana, S.: Web Services Description Language (WSDL) version 1.2 part 1: core language. Working Draft WD-wsdl12-20030611 (June 2003)Google Scholar
  12. 12.
    Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial string matching. IEEE Trans. Commun. 32, 396–402 (April 1984)CrossRefGoogle Scholar
  13. 13.
    Cohen, F.: Discover SOAP encoding’s impact on Web service performance. Whitepaper, IBM developerWorks (2003)Google Scholar
  14. 14.
    Cokus, M., Pericas-Geertsen, S., “XML Binary Characterization Use Cases. Working Group Note NOTE-xbc-use-cases-20050331 (March 2005)Google Scholar
  15. 15.
    Cokus, M., Renner, S., Winkowski, D.: The need for standard schema-based and hybrid compression. In: Proceedings of the 2003 W3C Workshop on Binary Exchange of XML Information Sets, Santa Clara, CA (September 2003)Google Scholar
  16. 16.
    Cokus, M., Winkowski, D.:XML sizing and compression study for military wireless data. In: Proceedings of the XML 2002 Conference, Baltimore, MD (December 2002)Google Scholar
  17. 17.
    Cowan, J., Tobin, R.: XML information set, Recommendation REC-xml-infoset-20040204 (February 2004)Google Scholar
  18. 18.
    Davis, D., Parashar, M.: Latency performance of SOAP implementations. In: Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID), Berlin, Germany, pp. 407–412 (May 2002)Google Scholar
  19. 19.
    Deutsch, P.: DEFLATE Compressed Data Format Specification version 1.3. RFC 1951, IETF (May 1996)Google Scholar
  20. 20.
    Deutsch, P.: GZIP file format specification version 4.3. RFC 1952, IETF (May 1996)Google Scholar
  21. 21.
    Deutsch, P., Gailly, J.-L.: ZLIB Compressed Data Format Specification version 3.3, RFC 1950, IETF (May 1996)Google Scholar
  22. 22.
    Ericsson, M., Levenshteyn, R.: On optimization of XML-based messaging. In: Proceedings of the 2nd Nordic Conference on Web Services (NCWS), Växjö, Sweden, pp. 167–179 (November 2003)Google Scholar
  23. 23.
    Fernández, M., Malhotra, A., Marsh, J., Nagy, M., Walsh, N.: XQuery 1.0 and XPath 2.0 data model (XDM). Recommendation REC-xpath-datamodel-20070123 (January 2007)Google Scholar
  24. 24.
    FIX Protocol Organization: The Financial Information Exchange Protocol (FIX), 4.3 edn. (August 2001)Google Scholar
  25. 25.
    Gamma, E., Beck, K.: Contributing to Eclipse: Principles, Patterns, and Plug-ins. Addison-Wesley, Reading, MA (2003)Google Scholar
  26. 26.
    Girardot, M., Sundaresan, N.: Millau: an encoding format for efficient representation and exchange of XML documents over the WWW. In: Proceedings of the 9th International World Wide Web Conference (WWW), Amsterdam, The Netherlands, pp. 747–765 (May 2000)Google Scholar
  27. 27.
    Govindaraju, M., Slominski, A., Choppella, V., Bramley, R., Gannon, D.: Requirements for and evaluation of RMI protocols for scientific computing. In: Proceedings of the 2000 ACM/IEEE conference on Supercomputing (SC), Dallas, TX (November 2000)Google Scholar
  28. 28.
    Huffman, D.A.: A method for the construction of minimum redundancy codes. In: Proceedings of the Institute of Radio Engineers, vol. 40, pp. 1098–1101 (September 1952)Google Scholar
  29. 29.
    Information Technology—Abstract Syntax Notation One (ASN.1): Specification of Basic Notation, International standard ITU-T Rec. X.680 (2002)Google Scholar
  30. 30.
    Josefsson, S.: The Base16, Base32, and Base64 Data Encodings. RFC 3548, IETF (July 2003)Google Scholar
  31. 31.
    Kohlhoff, C., Steele, R.: Evaluating SOAP for high performance business applications: real-time trading systems. In: Proceedings of the 12th International World Wide Web Conference (WWW), Budapest, Hungary (May 2003)Google Scholar
  32. 32.
    Lam, W., Ng, W., Wood, P., Levene, M.: XCQ: XML compression and querying system. In: Proceedings of the 12th International World Wide Web Conference (WWW), Budapest, Hungary, Poster (May 2003)Google Scholar
  33. 33.
    Larson, E.D.: An Overview of JSR124: J2EE Client Provisioning. http://wireless.java.sun.com/midp/articles/provisioning/ (February 2003)
  34. 34.
    Levene, M., Wood, P.T.: XML structure compression. Tech. Rep. BBKCS-02-05, School of Computer Science and Information Systems, Birkbeck College, University of London (2002)Google Scholar
  35. 35.
    Liefke, H., Suciu, D.: XMill: an efficient compressor for XML data. In: Proceedings of the 2000 ACM International Conference on Management of Data (SIGMOD), Dallas, TX, pp. 153–164 (June 2000)Google Scholar
  36. 36.
  37. 37.
    LOFAR: LOw Frequency ARray. http://www.lofar.org/ (Visited December 2006)
  38. 38.
    LOIS—A LOFAR Outrigger in Scandinavia. http://www.lois-space.net/ (Visited December 2006)
  39. 39.
    Manzini, G.: The Burrows-Wheeler transform: theory and practice. In: Proceedings of the 24th International Symposium on Mathematical Foundations of Computer Science (MFCS). LNCS, Szklarska Poŗeba, Poland, vol. 1672, pp. 34–47. Springer, Berlin Heidelberg New York (September 1999)Google Scholar
  40. 40.
    Min, J.K., Park, M.J., Chung, C.W.: XPRESS: a queriable compression for XML data. In: Proceedings of the 22th ACM International Conference on Management of Data (SIGMOD), San Diego, CA, pp. 122–133 (June 2003)Google Scholar
  41. 41.
    MFitra, N.: SOAP version 1.2 part 0: Primer, Recommendation REC-soap12-part0-20030624 (June 2003)Google Scholar
  42. 42.
    Moffat, A., Neal, R., Witten, I.: Arithmetic coding revisited. In: Proceedings of the 5th IEEE Data Compression Conference, Snowbird, UT, pp. 202–211 (March 1995)Google Scholar
  43. 43.
    Nair, S.: XML Compression Techniques: a Survey. Project Report, http://www.cs.uiowa.edu/rlawrenc/research/Students/SN\_04\_XMLCompress.pdf (2004)
  44. 44.
    Ng, W., Lam, W., Cheng, J.: Comparative analysis of XML compression technologies. World Wide Web 9, 5–33 (March 2006)CrossRefGoogle Scholar
  45. 45.
    Object Management Group, The Common Object Request Broker: Architecture and Specification version 2.5 (September 2001)Google Scholar
  46. 46.
    On optimization of SOAP communication companion web site. http://www.msi.vxu.se/users/rics/WS/ (Published December 2006)
  47. 47.
    Panas, T., Lundberg, J., Löwe, W.: Reuse in reverse engineering. In: Proceedings of the 12th International Workshop on Program Comprehension (IWPC), Bari, Italy, pp. 52–61 (June 2004)Google Scholar
  48. 48.
    Papazoglou, M.P.: Service-oriented computing: concepts, characteristics and directions. In: Proceedings of the 4th International Conference on Web Information Systems Engineering (WISE), Rome, Italy, pp. 3–12 (December 2003)Google Scholar
  49. 49.
    Romeo and Juliett (XML tagged). http://www.ibiblio.org/xml/examples/shakespeare/r_and_j.xml (Downloaded June 2003)
  50. 50.
    Sandoz, P., Pericas-Geertsen, S., Kawaguchi, K., Hadley, M.: Fast Web Services. Sun Developer Network. http://java.sun.com/developer/technicalArticles/WebServices/fastWS (August 2003)
  51. 51.
    Sandoz, P., Pericas-Geertsen, S., Kawaguchi, K., Hadley, M.: Fast Web Services. In: Proceedings of the 2003 W3C Workshop on Binary Exchange of XML Information Sets, Santa Clara, CA, USA (September 2003)Google Scholar
  52. 52.
    Schneier, B.: Applied Cryptography. Wiley, New York (1996)Google Scholar
  53. 53.
    Seward, J.: The bzip2 home page. http://sources.redhat.com/bzip2/ (1997)
  54. 54.
    Strein, D., Lincke, R., Lundberg, J., Löwe, W.: An extensible meta-model for program analysis. In: Proceedings of the 22nd IEEE International Conference on Software Maintenance (ICSM), Philadelphia, PA, pp. 380–390 (September 2006)Google Scholar
  55. 55.
    Sundaresan, N., Moussa, R.: Algorithms and programming models for efficient representation of XML for internet applications. In: Proceedings of the 10th International Conference on World Wide Web (WWW), Hong Kong, pp. 366–375 (May 2001)Google Scholar
  56. 56.
    Symbian. http://www.symbian.com/ (Visited December 2006)
  57. 57.
    Tolani, P., Haritsa, J.R.: Xgrind: a query-friendly XML compressor. In: Proceedings of the 18th International Conference on Data Engineering (ICDE), Washington, DC, pp. 225–234 (February 2002)Google Scholar
  58. 58.
    Turley, J.: Thumb squeezes ARM code size. In: Microprocessor Report, vol. 9 (March 1995)Google Scholar
  59. 59.
    Unix top. http://www.unixtop.org/ (Visited December 2006)
  60. 60.
    Williams, S.D., Haggar, P.: XML Binary Characterization Measurement Methodologies. Working Group Note NOTE-xbc-measurement-20050331 (March 2005)Google Scholar
  61. 61.
    Winter, A., Kullbach, B., Riediger, V.: An overview of the GXL Graph Exchange Language. In: Revised Lectures on Software Visualization, International Seminar, London, pp. 324–336 (May 2001)Google Scholar
  62. 62.
    Wireless Application Protocol: Wireless Markup Language Specification version 1.3, http://www.wapforum.org (February 2000)
  63. 63.
  64. 64.
    XMLZip. http://www.xmls.com/ (Visited December 2006)
  65. 65.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory. 23, 337–343 (May 1977)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Software Technology Group, MSIVäxjö UniversityVäxjöSweden

Personalised recommendations