World Wide Web

, Volume 9, Issue 4, pp 431–456 | Cite as

Algorithmic Computation and Approximation of Semantic Similarity

  • Ana G. Maguitman
  • Filippo MenczerEmail author
  • Fulya Erdinc
  • Heather Roinestad
  • Alessandro Vespignani


Automatic extraction of semantic information from text and links in Web pages is key to improving the quality of search results. However, the assessment of automatic semantic measures is limited by the coverage of user studies, which do not scale with the size, heterogeneity, and growth of the Web. Here we propose to leverage human-generated metadata—namely topical directories—to measure semantic relationships among massive numbers of pairs of Web pages or topics. The Open Directory Project classifies millions of URLs in a topical ontology, providing a rich source from which semantic relationships between Web pages can be derived. While semantic similarity measures based on taxonomies (trees) are well studied, the design of well-founded similarity measures for objects stored in the nodes of arbitrary ontologies (graphs) is an open problem. This paper defines an information-theoretic measure of semantic similarity that exploits both the hierarchical and non-hierarchical structure of an ontology. An experimental study shows that this measure improves significantly on the traditional taxonomy-based approach. This novel measure allows us to address the general question of how text and link analyses can be combined to derive measures of relevance that are in good agreement with semantic similarity. Surprisingly, the traditional use of text similarity turns out to be ineffective for relevance ranking.


web mining web search semantic similarity content and link similarity ranking evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Comput. Networks 30(1–7), 107–117 (1998)Google Scholar
  2. 2.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge, MA (1990)Google Scholar
  3. 3.
    Cover, T., Thomas., J.: Elements of Information Theory. Wiley & Sons, Inc., New York, NY (1991)Google Scholar
  4. 4.
    Cristianini, N., Shawe-Taylor, J., Lodhi, H.: Latent semantic kernels. In: Brodley, C., Danyluk, A. (eds.) Proceedings of ICML-01, 18th International Conference on Machine Learning, pp. 66–73, Williams College, USA, 2001. Morgan Kaufmann, San Francisco (2001)Google Scholar
  5. 5.
    Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)CrossRefGoogle Scholar
  6. 6.
    Fox, C.: Lexical analysis and stop lists. In: Information Retrieval: Data Structures and Algorithms. Prentice-Hall, Englewood Cliffs, NJ (1992)Google Scholar
  7. 7.
    Ganesan, P., Garcia-Molina, H., Widom, J.: Exploiting hierarchical domain structure to compute similarity. ACM Trans. Inf. Syst. 21(1), 64–93 (2003)CrossRefGoogle Scholar
  8. 8.
    Gruber, T.R.: A translation approach to portable ontologies. Knowl. Acquis. 5(2), 199–220 (1993)CrossRefGoogle Scholar
  9. 9.
    Haveliwala, T., Gionis, A., Klein, D., Indyk, P.: Evaluating strategies for similarity search on the Web. In: Lassner, D., De Roure, D., Iyengar, A. (eds.) Proc. 11th International World Wide Web Conference, New York, New York, 2002. ACM (2002)Google Scholar
  10. 10.
    Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proceedings of the International Conference on Research in Computational Linguistics (ROCLING X), Taiwan (1998)Google Scholar
  11. 11.
    Joslyn, C., Bruno, W.J.: Weighted pseudo-distances for categorization in semantic hierarchies. In: International Conference on Conceptual Structures, Kassel, Germany. Lecture Notes in Computer Science 3956, pp. 381–395 (2005)Google Scholar
  12. 12.
    Kandel, A.: Fuzzy Mathematical Techniques with Applications. Addison-Wesley, Reading, MA (1986)Google Scholar
  13. 13.
    Kandola, J., Shawe-Taylor, J., Cristianini, N.: Learning semantic similarity. In: Neural Information Processing Systems 15, pp. 657–664 (2002)Google Scholar
  14. 14.
    Kessler, M.: Bibliographic coupling between scientific papers. Am. Doc. 14, 10–25 (1963)Google Scholar
  15. 15.
    Kleinberg, J.M., Tardos, E.: Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields. In: IEEE Symposium on Foundations of Computer Science, New York, NY, pp. 14–23 (1999)Google Scholar
  16. 16.
    Korfhage, R.: Information Storage and Retrieval. Wiley, New York, New York (1997)Google Scholar
  17. 17.
    Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the Fifteenth International Conference on Machine Learning, Madison, WI, pp. 296–304 (1998)Google Scholar
  18. 18.
    Liu, N., Zhang, B., Yan, J., Yang, Q., Yan, S., Chen, Z., Bai, F., Ma, W.-Y.: Learning similarity measures in non-orthogonal space. In: CIKM ‘04: Proceedings of the thirteenth ACM conference on Information and knowledge management, pp. 334–341, New York, New York, 2004. ACM (2004)Google Scholar
  19. 19.
    Lord, P.W., Stevens, R.D., Brass, A., Goble, C.A.: Investigating semantic similarity measures across the gene ontology: the relationship between sequence and annotation. Bioinformatics 19(10), 1275–1283 (2003)CrossRefGoogle Scholar
  20. 20.
    Lu, W., Janssen, J., Milios, E., Japkowicz, N.: Node similarity in networked information spaces. In: Proceedings of the Conference of the IBM Centre for Advanced Studies on Collaborative Research (CASCONF01), Toronto, Ontario, Canada, IBM (2001)Google Scholar
  21. 21.
    Menczer, F.: Combining link and content analysis to estimate semantic similarity. In: Alt. Track Papers and Posters Proc. 13th International World Wide Web Conference, New York, NY, pp. 452–453 (2004)Google Scholar
  22. 22.
    Menczer, F.: Correlated topologies in citation networks and the web. Eur. Phys. J. B 38(2), 211–221 (2004)CrossRefGoogle Scholar
  23. 23.
    Menczer, F.: Mapping the semantics of web text and links. IEEE Internet Computing 9(3):27–36 (2005), May/JuneCrossRefGoogle Scholar
  24. 24.
    Montes-y-Gómez, M., Gelbukh, A., López-López, A., Baeza-Yates, R.: Flexible comparison of conceptual graphs. In: Proc. 12th International Conference and Workshop on Database and Expert Systems Applications (DEXA), Lecture Notes in Computer Science. Springer, Berlin Heidelberg New York (2001)Google Scholar
  25. 25.
    Pedersen, T., Patwardhan, S., Michelizzo, J.: Wordnet: similarity-measuring the relatedness of concepts. In: Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI-04), San Jose, CA, pp. 1024–1025 (2004)Google Scholar
  26. 26.
    Polalck, S.: Measures for the comparison of information retrieval systems. Am. Doc. 19(4), 387–397 (1968)Google Scholar
  27. 27.
    Porter, M.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)Google Scholar
  28. 28.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–30 (1989)CrossRefGoogle Scholar
  29. 29.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95), Montreal, Canada, pp. 448–453 (1995)Google Scholar
  30. 30.
    Salton, G., McGill, M.: An Introduction to Modern Information Retrieval. McGraw-Hill, New York, New York (1983)Google Scholar
  31. 31.
    Small, H.: Co-citation in the scientific literature: a new measure of the relationship between documents. J. Am. Soc. Inf. Sci. 42, 676–684 (1973)Google Scholar
  32. 32.
    Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327–352 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Ana G. Maguitman
    • 1
    • 2
  • Filippo Menczer
    • 1
    • 2
    Email author
  • Fulya Erdinc
    • 1
  • Heather Roinestad
    • 1
  • Alessandro Vespignani
    • 2
  1. 1.Department of Computer ScienceIndiana UniversityBloomingtonUSA
  2. 2.School of InfomaticsIndiana UniversityBloomingtonUSA

Personalised recommendations