Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

An Instinctive Application of Spatially Weighted Possibilistic Clustering Methods for the Detection of Lesions in Diabetic Retinopathy Images in Multi-dimensional Kernel Space

  • 10 Accesses

Abstract

Diabetic Retinopathy is a result of microvascular changes linked with hyperglycemia. The pathology is characterized by swollen and weak blood capillaries resulted due to excess glucose absorption by endothelial walls of them. The swollen and thick capillaries may burst and exude protein and fat based particles into the retinal fundus, which get clotted and obstruct the vision flow into the eye. The clotted particles are called Exudates, whose volume and number will decide the severity of the condition. As a result new blood capillaries are triggered to nourish the retina. But they are weak and fragile and may eventually burst making the complication more critical. Eye diagnosis requires dilation of the pupa using mydriatic drops which tends to many temporary and prolonged side effects. Also the reliability of the diagnosis is dependent on the Ophthalmologists experience and require hectic labor and time. This paper presents an instinctive multi-dimensional kernel possibilistic c means clustering method with induced spatial constraint for the detection of retinal abnormalities. The proposed method helps the clinician by automating the lesion detection process and has proven its statistical significance compared to the existing state of art methods.

This is a preview of subscription content, log in to check access.

Fig. 1

[Image Courtesy: Eye7 eye hospitals, New Delhi]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    You, W. P., & Henneberg, M. (2016). Type 1 diabetes prevalence increasing globally and regionally: the role of natural selection and life expectancy at birth. BMJ Open Diabetes Research and Care. https://doi.org/10.1136/bmjdrc-2015-000161.

  2. 2.

    Congdon, N. G., Friedman, D. S., & Lietman, T. (2003). Important causes of visual impairment in the world today. JAMA,290, 2057–2060.

  3. 3.

    Fong, D. S., Aiello, L., Gardner, T. W., et al. (2004). Retinopathy in diabetes. Diabetes Care,27(Suppl 1), S84–S87.

  4. 4.

    Ravindraiah, R., & Reddy, S. C. M. (2015). Qualitative evaluation of fuzzy clustering methods in segmentation of fundoscope diabetic retinopathy images. GESJ: Computer Science and Telecommunications,2(46), 28–35.

  5. 5.

    Ravindraiah, R., Reddy, S. C. M., & Prasad, P. R. (2016). Detection of exudates in diabetic retinopathy images using Laplacian kernel induced spatial FCM clustering algorithm. Indian Journal of Science and Technology,9(15), 1–6.

  6. 6.

    World Health Organization (WHO). (2005). Prevention of blindness from diabetes Mellitus: Report of a WHO consultation in Geneva, Switzerland. http://www.who.int/blindness/Prevention%20of%20Blindness%20from%20Diabetes%20Mellitus-with-cover-small.pdf.

  7. 7.

    Misra, A., Ramchandran, A., Jayawardena, R., Shrivastava, U., & Snehalatha, C. (2014). Diabetes in South Asians. Diabetic Medicine,31, 1153–1162. https://doi.org/10.1111/dme.12540.

  8. 8.

    Nick Kourgialis - Hellen Keller. (2015). International Vision Atlas. http://atlas.iapb.org/%20vision-trends/diabetic-retinopathy.

  9. 9.

    Yau, J. W., Rogers, S. L., Kawasaki, R., et al. (1909). Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care,2012(35), 556–564. https://doi.org/10.2337/dc11-.

  10. 10.

    Bourne, R. R., Stevens, G. A., White, R. A., et al. (2013). Causes of vision loss worldwide-1990–2010: a systematic analysis. The Lancet Global Health,1, e339–e349. https://doi.org/10.1016/S2214-109X(13)70113-X.

  11. 11.

    Resnikoff, S., Felch, W., Gauthier, T.-M., & Spivey, B. (2012). The number of ophthalmologists in practice and training worldwide: A growing gap despite more than 200 000 practitioners. British Journal of Opthamology,96, 1–5.

  12. 12.

    Rosas-Romero, R., Martinez-Carballido, J., Hernandez- Capistran, J., & Uribe-Valencia, L. J. (2015). A method to assist in the diagnosis of early diabetic retinopathy: Image processing applied to detection of microaneurysms in fundus images. Computerized Medical Imaging and Graphics,44, 41–53.

  13. 13.

    Gonzalez, R. C., & Wood, R. E. Digital image processing using Matlab. Pearson education, Inc. and Dorling Kindersely Publishing Inc.

  14. 14.

    Osareh, A., Mirmehdi, M., Thomas, B. T., & Markham, R. (2002). Classification and localisation of diabetic-related eye disease. In Proceedings of the 7th European conference on computer vision-part IV, ECCV ‘02

  15. 15.

    Osareh, A., Mirmehdi, M., Thomas, B., & Markham, R. (2003). Automated identification of diabetic retinal exudates in digital colour images. British Journal of Ophthalmology,87, 1220–1223.

  16. 16.

    Zhang, X., & Chutatape, O. (2005). Top-down and bottom up strategies in lesion detection of background diabetic retinopathy. In IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 422–428).

  17. 17.

    Sopharak, A., Thet Nwe, K., Moe, Y. A., Dailey M. N., & Uyyanonvara, B. (2008). Automatic exudate detection with a naïve bayes classifier. In International conference on embedded systems and intelligent technology (ICESIT) (pp. 139–142).

  18. 18.

    Sopharak, A., Uyyanonvara, B., & Barman, S. (2009). Automatic exudate detection for diabetic retinopathy screening. Science Asia,35, 80–88. https://doi.org/10.2306/scienceasia1513-1874.2009.35.080.

  19. 19.

    Kar, S. S., & Maity, S. P. (2018). Automatic detection of retinal lesions for screening of diabetic retinopathy. IEEE Transactions on Biomedical Engineering,65, 1–9. https://doi.org/10.1109/TBME.2017.2707578.

  20. 20.

    Kar, S. S., & Maity, S. P. (2018). Gradation of diabetic retinopathy on reconstructed image using compressed sensing. IET Journal of Image Processing,12(11), 1956–1963. https://doi.org/10.1049/iet-ipr.2017.1013.

  21. 21.

    Decencière, E., et al. (2013). TeleOphta: Machine learning and image processing methods for teleophthalmology. IRBM. https://doi.org/10.1016/j.irbm.2013.01.010.

  22. 22.

    Kauppi, T., Kalesnykiene, V., Kamarainen, J. K., Lensu, L., Sorri, I., Uusitalo, H., Kalviainen, H., & Pietila, J. Diaretdb0: Evaluation database and methodology for diabetic retinopathy algorithms. Technical report. Lappeenranta University of Technology Finland 2006.

  23. 23.

    Kauppi, T., Kalesnykiene, V., Kamarainen, J. K., Lensu, L., Sorri, I., Raninen A., Voutilainen R., Uusitalo, H., Kälviäinen, H., & Pietilä, J. DIARETDB1 diabetic retinopathy database and evaluation protocol. In Proceedings of the 11th conference on medical image understanding and analysis (Aberystwyth, Wales, 2007).

  24. 24.

    ASRS: Advocating for You and Your Patients in 2017. Retina Times Spring 2017, Vol. 35, No. 1, Issue 68.

  25. 25.

    Budai, A., et al. (2013). Robust vessel segmentation in fundus images. International Journal of Biomedical Imaging,2013, 1–11.

  26. 26.

    Dunn, J. C. (1973). A Fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics,3(3), 32–57.

  27. 27.

    Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. Newyork: Plenum.

  28. 28.

    Ravindraiah, R., & Reddy, S. C. M. (2018). An automated exudate detection in diabetic retinopathy fundus images using multi Kernel spatial fuzzy C means clustering method. International Journal of Engineering and Technology (UAE).,7(18), 10–14.

  29. 29.

    Ravindraiah, R., & Reddy, S. C. M. (2018). Exudates detection in diabetic retinopathy images using possibilistic C means clustering algorithm with induced Spatial constraint. Advances in Intelligent Systems and Computing,44, 455–463.

  30. 30.

    Krishnapuram, R., & Kellar, J. M. (1993). A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems,1(2), 98–110.

  31. 31.

    Ravindraiah, R., Reddy, S. C. M., & Prasad, P. R. (2016). A methodical approach for segmentation of diabetic retinopathy images. Indian Journal of Science and Technology,9(S1), 1–5.

  32. 32.

    Hoover, A., Kouznetsova, V., & Goldbaum, M. H. (2000). Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging,19(3), 203–210.

  33. 33.

    Niemeijer, M., Staal, J., & Ginneken, B., et al. (2004). DRIVE: digital retinal images for vessel extraction. http://www.isi.uu.nl/Research/Databases/DRIVE.

  34. 34.

    https://www.kaggle.com.

  35. 35.

    MESSIDOR: Methods for evaluating segmentation and indexing techniques dedicated to retinal ophthalmology. 2004. http://messidor.crihan.fr/index-en.php.

Download references

Acknowledgements

The authors are indebted to Dr. N. Praveen Kanth Reddy, M.B.B.S, M.S (Ophthalmology), Suthrama Eye hospital, Madanapalle, for his esteemed endorsements, which helped to carry out this work successfully.

Author information

Correspondence to R. Ravindraiah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ravindraiah, R., Reddy, S.C.M. An Instinctive Application of Spatially Weighted Possibilistic Clustering Methods for the Detection of Lesions in Diabetic Retinopathy Images in Multi-dimensional Kernel Space. Wireless Pers Commun (2020). https://doi.org/10.1007/s11277-020-07186-5

Download citation

Keywords

  • Kernel metrics
  • Spatial information
  • Fuzzy C means (FCM) clustering
  • Possibilistic C means (PCM) clustering