Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Technologies Assisting the Paradigm Shift from 4G to 5G

  • 66 Accesses

Abstract

Due to exponential increase in the capacity demands raised by the smart devices and multimedia applications of new generations, existing cellular networks are facing significant burden. To provide a solution to the challenges faced by 4th generation (4G) networks, there is utmost need of improving existing technologies as well as developing new technologies to meet the key requirements of 5th generation (5G) networks as well as the Next Generation Mobile Networks (NGMNs). Networks having high capacity, low latency, faster data rates and better quality of service is the vision of 5G mobile networks. In order to achieve this, we will need wider bandwidths as offered by millimeter wave bands, more spatial diversity as offered by Massive multiple input multiple output technology, denser networks as designed in dense small cell deployment technology, new waveforms using efficient coding techniques such as filtered orthogonal frequency division multiplexing and filter bank multiple carrier, a new architecture supporting virtualization and advance computing techniques as in network function virtualization, software defined networks, cloud radio access networks. Many more technologies are yet to be introduced. This tutorial gives an insight to the candidate technologies proposed by researchers till date and the progress made, for defining the standards to meet the requirements of 5G and NGMNs. It explains the basic concept of the technology and the latest development in the industry to support this technology.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Deloitte Touche Tohmatsu India LLP. (2018). 5G: The Catalyst to Digital Revolution in India. https://www2.deloitte.com/in/en/pages/technology-media-and-telecommunications/articles/the-catalyst-to-digital-revolution-in-india.html. Retrieved from 10th December 2019.

  2. 2.

    Chen, J., Lin, W., Yan, P., Xu, J., Hou, D., & Hong W. (2017). Design of mm-Wave Transmitter and Receiver for 5G. In Proceedings of 10th global symposium on millimeter-waves, 24–26th May 2017, Hong Kong, China. https://doi.org/10.1109/gsmm.2017.7970330.

  3. 3.

    Hu, F., Chen, B., & Zhu, K. (2018). Full spectrum sharing in cognitive radio networks toward 5G: A survey. IEEE Access,6, 15754–15776.

  4. 4.

    Wang, D., Song, B., Chen, D., & Du, X. J. (2019). Intelligent cognitive radio in 5G: AI-based hierarchical cognitive cellular networks. IEEE Wireless Communication,26, 54–61.

  5. 5.

    Tawk, Y., Costantine, J., & Christodoulou, C. J. (2014). Reconfigurable filtennas and MIMO in cognitive radio applications. IEEE Transaction on Antennas Propagation,62(3), 1074–1083.

  6. 6.

    Thummaluru, R., Ameen, M., & Chaudhary, R. K. (2019). Four-port MIMO cognitive radio system for midband 5G applications. IEEE Transactions on Antennas and Propagation,67(8), 2758–2766.

  7. 7.

    López-Pérez, D., Ding, M., Claussen, H., & Jafari, A. H. (2015). Towards 1 Gbps/UE in cellular systems: Understanding ultra-dense small cell deployments. IEEE Communications Surveys and Tutorials,17(4), 2078–2101.

  8. 8.

    Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., & Hanzo, L. (2017). Nonorthogonal multiple access for 5G and beyond. Proc. IEEE,105(12), 2347–2381.

  9. 9.

    Vaezi, M., Ding, Z., & Poor, H. V. (2019). Multiple access techniques for 5G wireless networks and beyond. Berlin: Springer.

  10. 10.

    Li, J., Kearney, K., Bala, E., & Yang, R. (2013). A resource block based filtered OFDM scheme and performance comparison. In Proceedings of the international conference on telecommunications (ICT), Casablanca, Morocco (pp. 1–5).

  11. 11.

    Vakilian, V., Wild, T., Schaich, F., Brink, S., & Frigon, J. F. (2013). Universal-filtered multi-carrier technique for wireless systems beyond LTE. In Proceedings of the IEEE GLOBECOM workshops (GC Wkshps), Atlanta, GA, USA (pp. 223–228).

  12. 12.

    Schaich, F., Wild, T., & Chen, Y. (2014). Waveform contenders for 5G—suitability for short packet and low latency transmissions. In Proceedings of the IEEE vehicular technology conference (VTC Spring), Seoul, Korea (pp. 1–5).

  13. 13.

    Zhang, X., Jia, M., Chen, L., Ma, J., & Qiu, J. (2015). Filtered-OFDM—Enabler for flexible waveform in the 5th generation cellular networks. In Proceedings of the IEEE global communication conference (GLOBECOM), San Diego, CA, USA (pp. 1–6).

  14. 14.

    Abdoli, J., Jia, M., & Ma, J. (2015).Filtered OFDM: A new waveform for future wireless systems. In Proceedings of the IEEE 16th international workshop signal processing advanced wireless communication (SPAWC), Stockholm, Sweden, pp. 66–70.

  15. 15.

    Bellanger, M., Renfors, M., Ihalainen, T., & da Rocha, C. A. F. (2010). OFDM and FBMC transmission techniques: A compatible high performance proposal for broadband power line communications. In International symposium on power line communications and its applications (ISPLC), Rio de Janeiro, Brazil (pp. 154–159).

  16. 16.

    Farhang-Boroujeny, B. (2011). OFDM versus filter bank multicarrier. IEEE Signal Processing Magazine,28(3), 92–112.

  17. 17.

    Kim, C., Kim, K., Yun, Y. H., Ho, Z., Lee, B., & Seol, J. Y. (2015). QAM-FBMC: A new multi-carrier system for post-OFDM wireless communications. In Proceedings of the IEEE global communications conference (GLOBECOM), San Diego, CA, USA (pp. 1–6).

  18. 18.

    Michailow, N., Matthé, M., Gaspar, I. S., Caldevilla, A. N., Mendes, L. L., Festag, A., et al. (2014). Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Transactions on Communications,62(9), 3045–3061.

  19. 19.

    G. Fettweis, M. Krondorf, & S. Bittner (2009). GFDM - generalized frequency division multiplexing. In Proceedings of the IEEE vehicle technology conference (VTC Spring), Barcelona, Spain (pp. 1–4).

  20. 20.

    Zhao, Z., Schellmann, M., Wang Q., Gong X., Boehnke R., & Xu, W. (2015). Pulse shaped OFDM for asynchronous uplink access. In Proceedings of the asilomar conference signals, systems and computers, Monterey, USA (pp. 3–7).

  21. 21.

    Chung, C. D. (2006). Spectrally precoded OFDM. IEEE Transactions on Communications,54(12), 2173–2185.

  22. 22.

    Monk, A., Hadani, R., Tsatsanis, M., & Rakib, S. (2016). OTFS—Orthogonal time frequency space. arXiv preprint [Online]. Retrieved 25th November 2019, from http://arxiv.org/abs/1608.02993 (pp. 1–13).

  23. 23.

    Kumar, U., Ibars, C., Bhorkar, A., & Jung, H. (2015). A waveform for 5G: guard interval DFT-s-OFDM. In Proc.of IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA (pp. 1–6).

  24. 24.

    Higuchi, K., & Kishiyama, Y. (2013). Non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink. In Proceedings of IEEE vehicular technology conference (VTC Fall), Las Vegas, NV, USA (pp. 1–5).

  25. 25.

    GPP, RP-160680. (2016). Downlink multiuser superposition transmissions for LTE. Mar. 2016.

  26. 26.

    Choi, J. (2015). Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application to NOMA systems. IEEE Transactions on Communications,63(3), 791–800.

  27. 27.

    Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transactions on Communications,98(3), 403–414.

  28. 28.

    GPP R1-154999. (2015). TP for classification of MUST schemes. TSG-RAN WG1 #82, Beijing, China.

  29. 29.

    Sahin, A., Yang, R., Ghosh, M., & Olesen, R. L. (2015). An improved unique word DFT-spread OFDM scheme for 5G systems. In Proceedings of IEEE Globecom workshops (GC Wkshps), San Diego, CA, USA (pp. 1–6).

  30. 30.

    Kumar, U., Ibars, C., Bhorkar, A., & Jung, H. (2015). A waveform for 5G: Guard interval DFT-s-OFDM. In Proceedings of IEEE globecom workshops (GC Wkshps), San Diego, CA, USA (pp. 1–6).

  31. 31.

    Berardinelli, G., Tavares, F. M. L., Sorensen, T. B., Mogensen, P., & Pajukoski, K. (2013). Zero-tail DFT-spread-OFDM signals. In Proceedings of IEEE globecom workshops (GC Wkshps), Atlanta, GA, USA (pp. 229–234).

  32. 32.

    Achaichia, P., Bot, M. L., & Siohan, P. (2011). Windowed OFDM versus OFDM/OQAM: A transmission capacity comparison in the HomePlug AV context. In IEEE international symposium on power line communications and its applications (ISPLC), Udine, Italy (pp. 405–410).

  33. 33.

    Kim, D., & Stuber, G. L. (1998). Residual ISI cancellation for OFDM with applications to HDTV broadcasting. IEEE Journal on Selected Areas in Communications,16(8), 1590–1599.

  34. 34.

    Li, X., & Cimini, L. J. (1998). Effects of clipping and filtering on the performance of OFDM. IEEE Communications Letters,2(5), 131–133.

  35. 35.

    Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of IEEE Vehicular Technology Conference (VTC Spring), Dresden, Germany (pp. 1–5).

  36. 36.

    Ding, Z., Dai, L., & Poor, H. V. (2016). MIMO-NOMA design for small packet transmission in the Internet of Things. IEEE Access,4, 1393–1405.

  37. 37.

    Ding, Z., Schober, R., & Poor, H. V. (2016). A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Transactions on Wireless Communications,15(6), 4438–4454.

  38. 38.

    Ding, Z., Adachi, F., & Poor, H. V. (2016). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications,15(1), 537–552.

  39. 39.

    Liu, Y., Elkashlan, M., Ding, Z., & Karagiannidis, G. K. (2015). Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Communications Letters,20(7), 1465–1468.

  40. 40.

    Timotheou, S., & Krikidis, I. (2015). Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Processing Letters,22(10), 1647–1651.

  41. 41.

    Cui, J., Ding, Z., & Fan, P. (2016). A novel power allocation scheme under outage constraints in NOMA systems. IEEE Signal Processing Letters,23(9), 1226–1230.

  42. 42.

    Mei, J., Yao, L., Long, H., & Zheng, K. (2016). Joint user pairing and power allocation for downlink non-orthogonal multiple access systems. In Proceedings of conference on communications (ICC), Kuala Lumpur, Malaysia (pp. 1–6).

  43. 43.

    Liu, F., Mahonen, P., & Petrova, M. (2016). Proportional fairness-based power allocation and user set selection for downlink NOMA systems. In Proceedings of conference on communications (ICC), Kuala Lumpur, Malaysia, (pp. 1–6).

  44. 44.

    Otao, N., Kishiyama, Y., & Higuchi, K. (2012). Performance of non-orthogonal access with SIC in cellular downlink using proportional fair-based resource allocation. In Proceedings of international symposium on wireless communication systems (ISWCS), Paris, France (pp. 476–480).

  45. 45.

    Liu, F., Mahonen, P., & Petrova, M. (2015). Proportional fairness-based user pairing and power allocation for non-orthogonal multiple access. In Proceedings of IEEE international symposium on personal, indoor and mobile radio communications (PIMRC), Hong Kong, P.R. China (pp. 1127–1131).

  46. 46.

    Sun, Y., Ng, D. W. K., Ding, Z. & Schober, R. (2016). Optimal joint power and subcarrier allocation for MC-NOMA systems. In Proceedings of the global communications conference (GLOBECOM), Washington, DC, USA (pp. 1–6).

  47. 47.

    Lei, L., Yuan, D., Ho, C. K., & Sun, S. (2016). Power and channel allocation for non-orthogonal multiple access in 5G systems: Tractability and computation. IEEE Transactions on Wireless Communications,15(12), 8580–8594.

  48. 48.

    Diamantoulakis, P. D., Pappi, K. N., Ding, Z., & Karagiannidis, G. K. (2016). Wireless powered communications with non-orthogonal multiple access. IEEE Transactions on Wireless Communications,15(12), 8422–8436.

  49. 49.

    Al-Imari, M., Xiao, P., Imran, M. A., & Tafazolli, R. (2014). Uplink non-orthogonal multiple access for 5G wireless networks. In Proceedings of international symposium on wireless communication systems (ISWCS), Barcelona, Spain (pp. 781–785).

  50. 50.

    Duan, W., Wen, M., Yan, Y., Xiong, Z., & Lee, M. H. (2016). Use of non-orthogonal multiple access in dual-hop relaying. arXiv preprint, http://arxiv.org/abs/1604.01151.

  51. 51.

    Ding, Z., Dai, H., & Poor, H. V. (2016). Relay selection for cooperative NOMA. IEEE Wireless Communications Letters,5(4), 416–419.

  52. 52.

    Tian, Y., Nix, A., & Beach, M. (2016). On the performance of opportunistic NOMA in downlink CoMP networks. IEEE Communications Letters,20(5), 998–1001.

  53. 53.

    Kim, J. B., & Lee, I. H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communications Letters,19(11), 2037–2040.

  54. 54.

    Men, J., & Ge, J. (2015). Non-orthogonal multiple access for multiple-antenna relaying networks. IEEE Communications Letters,19(10), 1686–1689.

  55. 55.

    Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters,19(8), 1462–1465.

  56. 56.

    Choi, J. (2014). Non-orthogonal multiple access in downlink coordinated two-point systems. IEEE Communications Letters,18(2), 313–316.

  57. 57.

    Hoshyar, R., Wathan, F. P., & Tafazolli, R. (2008). Novel low-density signature for synchronous CDMA systems over AWGN channel. IEEE Transactions on Signal Processing,56(4), 1616–1626.

  58. 58.

    Hanzo, L. L., & Keller, T. (2007). OFDM and MC-CDMA: A primer. New Yrok: Wiley.

  59. 59.

    Hanzo, L., Akhtman, Y., Akhtman, J., Wang, L., & Jiang, M. (2010). MIMO-OFDM for LTE, WiFi and WiMAX: Coherent versus non-coherent and cooperative turbo transceivers. New York: Wiley.

  60. 60.

    Brannstrom, F., Aulin, T. M., & Rasmussen, L. K. (2002). Iterative detectors for trellis-code multiple-access. IEEE Transactions on Communications,50(9), 1478–1485.

  61. 61.

    Liu, L., Tong, J., & Ping, L. (2006). Analysis and optimization of CDMA systems with chip-level interleavers. IEEE Journal on Selected Areas in Communications,24(1), 141–150.

  62. 62.

    Chen, S., Ren, B., Gao, Q., Kang, S., Sun, S., & Niu, K. (2016). Pattern division multiple access (PDMA)—A novel non-orthogonal multiple access for 5G radio networks. IEEE Transactions on Vehicular Technology,PP(99), 1–1.

  63. 63.

    Yuan, Z., Yu, G., Li, W., Yuan, Y., Wang, X., & Xu, J. (2016). Multi-user shared access for internet of things. In Proceedings of IEEE vehicular technology conference (VTC).

  64. 64.

    Naim, M. A., Fonseka, J. P., & Dowling, E. M. (2015). A building block approach for designing multilevel coding schemes. IEEE Communications Letters,19(1), 2–5.

  65. 65.

    Dowling, E. M., & Fonseka, J. P. (2011). Tiled-building-block trellis encoders. US Patent: 8 007 790, issued date Dec. 13, 2011.

  66. 66.

    Fang, D., Huang, Y., Ding, Z., Geraci, G., Shieh, S. L., & Claussen, H. (2016). Lattice partition multiple access: A new method of downlink non-orthogonal multiuser transmissions. In Proceedings of the global communications conference (GLOBECOM), Washington, DC, USA.

  67. 67.

    Huang, Y., & Narayanan, K. R. (2016). Construction _A and _D lattices: Construction, goodness, and decoding algorithm. arXiv preprint, http://arxiv.org/abs/1506.08269.

  68. 68.

    da Silva, P. R. B., & Silva, D. (2014). Design of lattice network codes based on construction D. In Proceedings of the international telecommunications symposium (ITS), Sao Paulo, Brazil (pp. 1–5).

  69. 69.

    Xu, Y., Sun, H., Hu, R. Q., & Qian, Y. (2015). Cooperative non-orthogonal multiple access in heterogeneous networks. In Proceedings of the global communications conference (GLOBECOM) (pp. 1–6).

  70. 70.

    Liu, Y., Qin, Z., Elkashlan, M., Gao, Y., & Nallanathan, A. (2016). Non-orthogonal multiple access in massive MIMO aided heterogeneous networks. In IEEE proceedings of the global communications conference (GLOBECOM), Washington, DC, USA (pp. 1–6).

  71. 71.

    Ding, Z., Fan, P., & Poor, H. V. (2016). Random beamforming in millimeter-wave NOMA networks. arXiv:1607.06302.

  72. 72.

    Cui, J., Liu, Y., Ding, Z., Fan, P., & Nallanathan, A. (2017). Optimal user scheduling and power allocation for millimeter wave NOMA systems. arXiv preprint arXiv:1705.03064.

  73. 73.

    Liu, Y., Ding, Z., Elkashlan, M., & Yuan, J. (2016). Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Transactions on Vehicular Technology,65(12), 10152–10157.

  74. 74.

    Zhao, J., Liu, Y., Chai, K. K., Chen, Y., Elkashlan, M., & Alonso-Zarate, J. (2016). NOMA-based D2D communications towards 5G. In IEEE proceedings of the global communications conference (GLOBECOM), Wanshington, DC, USA (pp. 1–6).

  75. 75.

    Roh, W., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine,52(2), 106–113.

  76. 76.

    Roh, W. (2013). Performances and feasibility of mmwave beamforming systems in cellular environments invited talk. IEEE ICC’13. http://www.ieeeicc.org/2013/ICC%202013_mmWave%20Invited%20Talk_Roh.pdf. Retrieved from 28th July 2018.

  77. 77.

    Chris Pearson. (2019). 5G Radios are packed with advanced antenna technology. White paper, 5G America.

  78. 78.

    Chris Pearson. (2019). Advanced-antenna-systems-for-5g. 5G Americas. Available at: https://www.5gamericas.org/advanced-antenna-systems-for-5g. Retrieved from 10th December 2019.

  79. 79.

    Ericsson. (2019). Advanced antenna systems for 5G networks. Available at: https://www.ericsson.com/en/reports-and-papers/white-papers/advanced-antenna-systems-for-5g-networks. Retrieved from 10th December 2019.

  80. 80.

    Cossu, G., Khalid, A. M., Choudhury, P., Corsini, R., & Ciaramella, E. (2012). 3.4 Gbit/s visible optical wireless transmissionbased on RGB LED. Optics Express,20(26), B501–B506. https://doi.org/10.1364/oe.20.00b501.

  81. 81.

    Zvanovec, S., Chvojka, P., Haigh, P., & Ghassemlooy, Z. (2015). Visible light communications towards 5G. Radioengineering,24(1), 1–9. https://doi.org/10.13164/re.2015.0001.

  82. 82.

    Yamazato, T., Kawagita, N., Okada, H., Fujii, T., Yendo, T., Arai, S., et al. (2017). The uplink visible light communication beacon system for universal traffic management. IEEE Access,5, 22282–22290.

  83. 83.

    Pergoloni, S., Biagi, M., Colonnese, S., Cusani, R., & Scarano, G. (2015). Coverage optimization of 5G atto-cells for visible light communications access. In Proceedings of the IEEE international workshop on measurements and networking (M&N), Coimbra, Portugal (pp. 12–13).

  84. 84.

    Ulgen, O., Ozmat, U., & Gunaydin, E. (2018). Hybrid implementation of millimeter wave and visible light communications for 5G networks. In Proceedings of the telecommunications forum (TELFOR), Belgrade, Serbia (pp. 20–21).

  85. 85.

    Chi, N., Shi, J., Zhou, Y., Wang, Y., Zhang, J., & Huang, X. (2016). High speed LED based visible light communication for 5G wireless backhaul. In Proceedings of the IEEE photonics society summer topical meeting series (SUM), Newport Beach, CA, USA (pp. 11–13).

  86. 86.

    Warmerdam, K., Pandharipande, A., & Caicedo, D. (2015). Connectivity in IoT indoor lighting systems with visible light communications. In Proceedings of the IEEE online conference on green communications. (OnlineGreenComm), Piscataway, NJ, USA (pp. 47–52).

  87. 87.

    Feng, L., Yang, H., Hu, R. Q., & Wang, J. (2018). mmWave and VLC-based indoor channel models in 5G wireless networks. IEEE Wireless Communications,25, 70–77.

  88. 88.

    BenMimoune, A., & Kadoch, M. (2017). Relay technology for 5G networks and IoT applications. In D. Acharjya & M. Geetha (Eds.), Internet of things: Novel advances and envisioned applications. Studies in big data (Vol. 25). Cham: Springer.

  89. 89.

    Deng, J. (2018). Millimeter-wave communication and mobile relaying in 5G cellular networks. Doctoral dissertations, ISBN: 978-952-60-8179-3.

  90. 90.

    Zhang, Z., Ma, Z., Xiao, M., Karagiannidis, G., Ding, Z., & Fan, P. (2016). Two-timeslot two-way full-duplex relaying for 5G wirelesscommunication networks. IEEE Transactions on Communications http://www.lancaster.ac.uk/staff/dingz/TCOMM2574845.pdf.

  91. 91.

    Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communication Magazine. https://doi.org/10.1109/MCOM.2014.6736746.

  92. 92.

    Ansari, R., Hassan, S., & Chrysostomou, C. (2017). Device-to-device communication for 5G. In M. Ali Imran, S. Ali Raza Zaidi, M. Zeeshan Shakir (Eds.), Access, Fronthaul and Backhaul networks for 5G and beyond (p. 584). London: IET.

  93. 93.

    Qualcomm Technologies. (2017). What can we do with 5G NR Spectrum Sharing that isn’t possible today? https://www.qualcomm.com/media/documents/files/new-3gpp-effort-on-nr-in-unlicensed-spectrum-expands-5g-to-new-areas.pdf. Retrieved from 23rd December 2019.

  94. 94.

    Ni, J., Zhang, K., Lin, X., & Shen, X. (2017). Securing fog computing for internet of things applications: Challenges and solutions. IEEE Communications Surveys and Tutorials,20, 601–628.

  95. 95.

    Choi, N., Kim, D., Lee, S., & Yi, Y. (2017). Fog operating system for user-oriented IoT services: Challenges and research directions. IEEE Communications Magazine,55, 2–9.

  96. 96.

    Yi, S., Li, C., & Li, Q. (2015). A survey of fog computing: Concepts, applications and issues. In Proceedings of the 2015 workshop on mobile big data (pp. 37–42). ACM.

  97. 97.

    Ammar, M., Ateya, A., Khakimov, A., Gudkova, I., Abuarqoub, A., Samouylov, K., et al. (2019). Secure and reliable IoT networks using fog computing with software-defined networking and Blockchain. Journal of Sensor and Actuator Network. https://doi.org/10.3390/jsan80100152019.

  98. 98.

    Yousefpour, A., Ishigaki, G., & Jue, J. P. (2017). Fog computing: Towardsminimizing delay in the internet of things. In The proceedings of IEEE international conference on edge computing (EDGE) (pp. 17–24).

  99. 99.

    Jiang, Y., Zhe, H., & Danny, H. K. (2018). Challenges and Solutions in Fog Computing Orchestration. IEEE Network,32(3), 122–129.

  100. 100.

    Karamalegos,V. (2019). 5 innovative Fog and Edge computing Solutions for the factory of the future. https://www.smarterchains.com/blog/fog-edge-computing/. Retrieved from on 23rd December 2019.

  101. 101.

    G 3GPP architecture working group. (2017). View on 5G architecture (version 2). https://5g-ppp.eu/wp-content/uploads/2017/07/5G-PPP-5G-Architecture-White-Paper-2-Summer-2017_For-Public-Consultation.pdf. Retrieved from 26 December 2019.

  102. 102.

    Barakabitze, A. A., Ahmad, A. Hines, & Mijumbi, A. (2020). 5G network slicing using SDN and NFV- A survey of taxonomy, architectures and future challenges. Science Direct, computer networks,167(11), 106984.

  103. 103.

    Ordonez-Lucena, J., Ameigeiras, P., Lopez, D., Ramos-Munoz, J. J., Lorca, J., & Folgueira, J. (2017). Network Slicing for 5G with SDN/NFV: Concepts. Architectures and Challenges: IEEE communications Magazine. https://doi.org/10.1109/MCOM.2017.1600935.

  104. 104.

    Kitindi, E. J., Fu, S., Jia, Y., Kabir, A., & Wang, Y. (2017). Wireless network virtualization with SDN and C-RAN for 5g networks: Requirements, opportunities, and challenges. IEEE Access. https://doi.org/10.1109/ACCESS.2017.2744672.

Download references

Author information

Correspondence to Jolly Parikh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parikh, J., Basu, A. Technologies Assisting the Paradigm Shift from 4G to 5G. Wireless Pers Commun (2020). https://doi.org/10.1007/s11277-020-07053-3

Download citation

Keywords

  • 5 g Technologies
  • Dense small scale deployments
  • Multiple access schemes
  • Spectrum sharing
  • Network virtualization