Advertisement

Design of Novel Dual Input DC–DC Converter for Energy Harvesting System in IoT Sensor Nodes

  • A. LavanyaEmail author
  • R. Jegatheesan
  • K. Vijayakumar
Article

Abstract

A new DC–DC converter capable of working with more than one source for harvesting energy from clean energy sources is proposed. Key features of this proposed converter are single inductor and reduced total number of components. In addition the converter has reduced stresses and power losses. Dual input and output modes, with its operation and steady-state analysis are discussed. Comparative study of the topologies given in literature with a proposed topology for parameters considered like the number of components and voltage gain is presented. Compatibility of the proposed converter is proved with reduced losses using loss distribution analysis of the converter and it is more reliable for energy system in telecom applications, which is validated using reliability analysis, is also highlighted. Finally, to substantiate the working of the non isolated DC–DC converter considered the test results are presented.

Keywords

Dual input Dual output Off-grid PV Battery Losses Reliability 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  1. 1.
    Hosenuzzaman, M., Rahim, N. A., Selvaraj, J., Hasanuzzaman, M., Malek, A. B. M. A., & Nahar, A. (2015). Global prospects, progress, policies, and environmental impact of solar photo voltaic power generation. Renewable and Sustainable Energy Reviews,41, 284–297.CrossRefGoogle Scholar
  2. 2.
    Mirhassani, S., Ong, H. C., Chong, W. T., & Leong, K. Y. (2015). Advances and challenges in grid tied photovoltaic systems. Renewable and Sustainable Energy Reviews,49, 121–131.CrossRefGoogle Scholar
  3. 3.
    Khaligh, A., Cao, J., & Lee, Y. J. (2009). A multiple-input DC–DC converter topology. IEEE Transactions on Power Electronics,24, 862–868.CrossRefGoogle Scholar
  4. 4.
    Kumar, L., & Jain, S. (2013). Multiple-input DC/DC converter topology for hybrid energy system. IET Power Electronics,6, 1483–1501.CrossRefGoogle Scholar
  5. 5.
    Wu, H., Sun, K., Ding, S., & Xing, Y. (2013). Topology derivation of non-isolated three-port DC–DC converters from DIC and DOC. IEEE Transactions on Power Electronics,28(7), 3297–3307.CrossRefGoogle Scholar
  6. 6.
    Marchesoni, M., & Vacca, C. (2007). New DC–DC converter for energy storage system interfacing in fuel cell hybrid electric vehicles. IEEE Transactions on Power Electronics,22, 301–308.CrossRefGoogle Scholar
  7. 7.
    Banaei, M. R., Ardi, H., Alizadeh, R., & Farakhor, A. (2014). Non-isolated multi-input–single-output DC/DC converter for photovoltaic power generation systems. IET Power Electronics,7, 2806–2816.CrossRefGoogle Scholar
  8. 8.
    Liu, Y.-C., & Chen, Y.-M. (2009). A systematic approach to synthesizing multi-input DC–DC converters. IEEE Transactions on Power Electronics,24(1), 116–127.CrossRefGoogle Scholar
  9. 9.
    Li, Y., Ruan, X., Yang, D., Liu, F., & Tse, C. K. (2010). Synthesis of multiple input DC/DC converters. IEEE Transactions on Power Electronics,25(9), 2372–2385.CrossRefGoogle Scholar
  10. 10.
    Zhou, L. W., Zhu, B. X., & Luo, Q. M. (2012). High step-up converter with capacity of multiple input. IET Power Electronics,5, 524–531.CrossRefGoogle Scholar
  11. 11.
    Farzam, N., Danyali, S., Hosseini, S. H., Sabahi, M., & Niapour, S. M. (2012). Modeling and control of a new three-input DC–DC boost converter for hybrid PV/FC/battery power system. IEEE Transactions on Power Electronics,27(5), 2309–2324.CrossRefGoogle Scholar
  12. 12.
    Kardan, F., Alizadeh, R., & Banaei, M. R. (2017). A new three input DC/DC converter for hybrid PV/FC/battery applications. IEEE Journal of Emerging and Selected Topics in Power Electronics,5(4), 1771–1778.CrossRefGoogle Scholar
  13. 13.
    Di Napoli, A., Crescimbini, F., Rodo, S., & Solero, L. (2002). Multiple input DC–DC power converter for fuel-cell powered hybrid vehicles. In 2002 IEEE 33rd annual IEEE power electronics specialists conference. Proceedings (Cat. No. 02CH37289), vol. 4, p. 1685e90.Google Scholar
  14. 14.
    Gavris, M., Muntean, N., & Cornea, O. (2011). A new dual- input hybrid buck DC–DC converter. In Electrical machines and power electronics and 2011 electromotion joint conference (ACEMP).Google Scholar
  15. 15.
    Deihimi, A., Mahmoodieh, M. E. S., & Iravani, R. (2017). A new multiinput step-up DC–DC converter for hybrid energy systems. Electric Power System Research,149, 111e24.CrossRefGoogle Scholar
  16. 16.
    Cheng, K. W. E., & Yuan-mao, Y. (2013). Multi-input voltage-summation converter based on switched-capacitor. IET Power Electronics,6, 1909–1916.CrossRefGoogle Scholar
  17. 17.
    Hou, S., Chen, J., Sun, T., & Bi, X. (2016). Multi-input step-up converters based on the switched-diode-capacitor voltage accumulator. IEEE Transactions on Power Electronics,31, 381–393.CrossRefGoogle Scholar
  18. 18.
    Chen, Y. M., Liu, Y. C., & Lin, S. H. (2006). Double-input PWM DC/DC converter for high-/low-voltage sources. IEEE Transactions on Industrial Electronics,53, 1538–1545.CrossRefGoogle Scholar
  19. 19.
    Gummi, K., & Ferdowsi, M. (2010). Double-input DC–DC power electronic converters for electric-drive vehicles topology exploration and synthesis using a single-pole triple-throw switch. IEEE Transactions on Industrial Electronics,57, 617e23.CrossRefGoogle Scholar
  20. 20.
    Ray, O., Prasad, J. A., & Mishra, S. (2013). A multi-port DC-DC converter topology with simultaneous buck and boost outputs. In IEEE international symposium on industrial electronics May 2013.Google Scholar
  21. 21.
    Badstuebner, U., Biela, J., & Kolar, J. W. (2010). An optimized, 99% efficient, 5 kW, phase-shift PWM DC–DC converter for data centers and telecom applications. In Applied power electronics conference and exposition (APEC), 2010 twenty-fifth annual IEEE, 21–25 February 2010, Palm Springs, California, pp. 773–780.Google Scholar
  22. 22.
    Traore, M., Ndiaye, A., Mbodji, S., Faye, M., Gueye, D., Tankari, M. T., et al. (2018) Supervision of a PV system with storage connected to the power line and design of a battery protection system. Wireless Networks.  https://doi.org/10.1007/s11276-018-1886-x.CrossRefGoogle Scholar
  23. 23.
    Rodrguez, J. C., Holmes, D. G., Mcgrath, B., & Wilkinson, R. H. (2018). A self-triggered pulsed-mode flyback converter for electric-field energy harvesting. IEEE Journal of Emerging and Selected Topics in Power Electronics,6(1), 377–386.CrossRefGoogle Scholar
  24. 24.
    Mondal, S., & Paily, R. (2017). Efficient solar power management system for self-powered IoT node. IEEE Transactions on Circuits and Systems I,64(9), 2359–2369.CrossRefGoogle Scholar
  25. 25.
    Elhebeary, M. R., Ibrahim, M. A. A., Aboudina, M. M., & Mohieldin, A. N. (2018). Dual-source self-start high-efficiency microscale smart energy harvesting system for IoT. IEEE Transactions on Industrial Electronics,65(1), 342–351.CrossRefGoogle Scholar
  26. 26.
    Banu, J. B., & Moses, M. B. (2018). IOT based augmented perturb-and-observe soft switching boost converters for photovoltaic power systems in smart cities. Wireless Personal Communication.  https://doi.org/10.1007/s11277-018-5280-x.CrossRefGoogle Scholar
  27. 27.
    Baraneetharan, E., & Selvakumar, G. (2018). Smart internet of things (IOT) system for performance improvement of dual bridge LLC resonant converter by using sophisticated distribution control method (SDC). Wireless Personal Communication.  https://doi.org/10.1007/s11277-018-5510-2.CrossRefGoogle Scholar
  28. 28.
    Navamani, J. D., Jegatheesan, R., & Vijayakumar, K. (2018). Reliability study of high gain DC–DC converters based on RRPP I-IIA configuration for shipboard power system. Sadhana,43, 71.CrossRefGoogle Scholar
  29. 29.
    Navamani, J. D., Jegatheesan, R., & Vijayakumar, K. (2018). Reliability analysis and SFG modeling of a new modified quadratic boost DC–DC converter. Informacije MIDEM, Journal of Microelectronics, Electronic Components and Materials,48(1), 3–18.Google Scholar
  30. 30.
    Greensburg, P. A. (1990). Reliability prediction of electronic equipments. 1990 Relex Software Corporation, Rep. MIL-HDBK-217 J.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.SRM Institute of Science and TechnologyKattankulathurIndia

Personalised recommendations