Advertisement

Performance Analysis of Opportunistic, Reactive and Partial Relay Selection with Adaptive Transmit Power for Cognitive Radio Networks

  • Nadhir Ben HalimaEmail author
  • Hatem Boujemâa
Article
  • 12 Downloads

Abstract

In this paper, we derive the packet error probability of cognitive radio networks. Our analysis is valid when the powers of secondary source and relays are adaptive. The secondary source and relays can adapt their transmitting power so that interference to primary receiver is below a given threshold T. The analysis takes into account interference from primary transmitter. Different relay selection techniques are investigated such as opportunistic amplify and forward (AF) relaying, partial and reactive relay selection. In opportunistic AF relaying, the selected relay offers the highest end-to-end signal to interference plus noise ratio (SINR). Partial relay selection activates the relay with the largest SINR of first hop. Reactive relay selection activates the relay with the largest SINR of second hop.

Keywords

Cognitive radio networks Adaptive transmit power Packet error probability Primary and secondary users 

Notes

References

  1. 1.
    Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRefGoogle Scholar
  2. 2.
    Akyildiz, I., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRefGoogle Scholar
  3. 3.
    Rini, S., & Hupper, C. (2013). On the capacity of cognitive interference channel with a common cognitive message. Transaction on Emerging Telecommunication Technologies, 1, 12–18.Google Scholar
  4. 4.
    Alptekin, G. I., & Bener, A. B. (2011). Spectrum trading in cognitive radio networks with strict transmission power control. Transaction on Emerging Telecommunication Technologies, 22(6), 282–295.CrossRefGoogle Scholar
  5. 5.
    Tan, X., Zhang, H., Chen, Q., & Hu, J. (2013). Opportunistic channel selection based on time series prediction in cognitive radio networks. Transaction on Emerging Telecommunication Technologies, 17(3), 32–38.Google Scholar
  6. 6.
    Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRefGoogle Scholar
  7. 7.
    Menon, R., Buehrer, R., & Reed, J. (2005). Outage probabilitybased comparison of underlay and overlay spectrum sharing techniques. In IEEE international symposium on new frontiers in dynamic spectrum access networks (pp. 101–109). Baltimore.Google Scholar
  8. 8.
    Chamkhia, H., Hasna, M. O., Hamila, R., & Hussain, S. I. (2012). Performance analysis of relay selection schemes in underlay cognitive networks with Decode and Forward relaying. IEEE PIMRC, Syndney, Australia, 9–12 Sept 2012.Google Scholar
  9. 9.
    Manna, M. A., Chen, G., & Chambers, J. A. (2014). Outage probability analysis of cognitive relay network with four relay selection and end-to-end performance with modified quasi-orthogonal space-time coding. IET Communications, 8(2), 233–241.CrossRefGoogle Scholar
  10. 10.
    Hussain, S. I., Alouini, M.-S., Hasna, M., & Qaraqe, K. (2012). Partial relay selection in underlay cognitive networks with fixed gain relays (pp. 1–5). VTC Spring, Yokohama, Japan, 6–9 May 2012.Google Scholar
  11. 11.
    Hussain, S. I., Alouini, M. S., Qarage, K., & Hasna, M. (2012). Reactive relay selection in underlay cognitive networks with fixed gain relays (pp. 1784–1788). IEE ICC, Ottawa, Canada, 10–15 June 2012.Google Scholar
  12. 12.
    Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.CrossRefGoogle Scholar
  13. 13.
    Luo, L., Zhang, P., Zhang, G., & Qin, J. (2011). Outage performance for cognitive relay networks with underlay spectrum sharing. IEEE Communications Letters, 15(7), 710–712.CrossRefGoogle Scholar
  14. 14.
    Zhong, C., Ratnarajah, T., & Wong, K.-K. (2011). Outage analysis of decode-and-forward cognitive dual-hop systems with the interference constraint in Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 60(6), 2875–2879.CrossRefGoogle Scholar
  15. 15.
    Kang, X., Zhang, R., Liang, Y.-C., & Garg, H. K. (2011). Optimal power allocation strategies for fading cognitive radio channels with primary user outage constraint. IEEE Journal on Selected Areas in Communications, 29(2), 374–383.CrossRefGoogle Scholar
  16. 16.
    Yan, Z., Zhang, X., & Wang, W. (2011). Exact outage performance of cognitive relay networks with maximum transmit power limits. IEEE Communications Letters, 15(12), 1317–1319.CrossRefGoogle Scholar
  17. 17.
    Kim, H., Lim, S., Wang, H., & Hong, D. (2012). Optimal power allocation and outage analysis for cognitive full duplex relay systems. IEEE Transactions on Wireless Communications, 11(10), 3754–3765.CrossRefGoogle Scholar
  18. 18.
    Tourki, K., Qaraqe, K. A., & Alouini, M.-S. (2013). Outage analysis for underlay cognitive networks using incremental regenerative relaying. IEEE Transactions on Vehicular Technology, 62(2), 721–734.CrossRefGoogle Scholar
  19. 19.
    Guo, Y., Kang, G., Zhang, N., Zhou, W., & Zhang, P. (2010). Outage performance of relay-assisted cognitive-radio system under spectrum-sharing constraints. Electronics Letters, 46(2), 182–184. Cited by: Papers (60).CrossRefGoogle Scholar
  20. 20.
    Chakraborty, P., & Prakriya, S. (2017). Secrecy outage performance of a cooperative cognitive relay network. IEEE Communications Letters, 21(2), 326–329.CrossRefGoogle Scholar
  21. 21.
    He, J., Guo, S., Pan, G., Yang, Y., & Liu, D. (2017). Relay cooperation and outage analysis in cognitive radio networks with energy harvesting. IEEE Systems Journal, PP(99), 1–12.Google Scholar
  22. 22.
    Arezumand, H., Zamiri-Jafarian, H., & Soleimani-Nasab, E. (2017). Outage and diversity analysis of underlay cognitive mixed RF-FSO cooperative systems. IEEE/OSA Journal of Optical Communications and Networking, 9(10), 909–920.CrossRefGoogle Scholar
  23. 23.
    Al-Qahtani, F. S., Abd El-Malek, A. H., Ansari, I. S., Radaydeh, R. M., & Zummo, S. A. (2017). Outage analysis of mixed underlay cognitive RF MIMO and FSO relaying with interference reduction. IEEE Photonics Journal, 9(2), 1–22.CrossRefGoogle Scholar
  24. 24.
    Xi, Y., Burr, A., Wei, J. B., & Grace, D. (2011). A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Transactions on Wireless Communications, 10(5), 1373–1377.CrossRefGoogle Scholar
  25. 25.
    Zhang, R. (2009). On peak versus average interference power constraints for protecting primary users in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(4), 2112–20.CrossRefGoogle Scholar
  26. 26.
    Hasna, M. O., & Alouini, M.-S. (2004). Harmonic mean and end-to-end performance of transmission systems with relays. IEEE Transactions on Communications, 52(1), 130–135.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.College of Computer Science and Engineering in YanbuTaibah UniversityMadinahSaudi Arabia
  2. 2.COSIM Lab.SUPCOMArianaTunisia

Personalised recommendations