Advertisement

Design and Development of Low Profile MIMO Antenna for 5G New Radio Smartphone Applications

  • Arumita BiswasEmail author
  • Vibha Rani Gupta
Article
  • 27 Downloads

Abstract

A low-profile planar four-element MIMO antenna is proposed in this paper that can be integrated inside wireless handheld devices. Every unit antenna is made of simple planar L-shaped monopole placed over etched non-ground area of 10 × 5 mm2. The optimized antenna elements cover three 5G New Radio bands falling within C-band: n77 band (3.3–4.2 GHz), n78 band (3.3–3.8 GHz) and n79 band (4.4–5 GHz), with isolation better than 18.8 dB, without the requirement of any additional decoupling structure. The designed antenna is fabricated on FR4 substrate of dimension 120 × 65 × 1.6 mm3. Antenna characteristics regarding reflection coefficient, mutual coupling, radiation pattern and gain are measured and discussed. The envelop correlation coefficient is computed and is lower than 0.018 for the entire range of frequency under consideration. The simplicity and compactness of the proposed MIMO antenna provides adequate space for integration of other circuits inside handheld mobile terminal. Further the integration with lower generation antennas are investigated; the result indicates that the placement of the proposed antenna system on the two long arms of ground plane offer adequate space for integration of lower generation antenna without adversely affecting each other’s performance.

Keywords

Multiple input multiple output (MIMO) antenna Monopole antenna 5G new radio Envelop correlation coefficient Mobile terminal antenna 

Notes

References

  1. 1.
    Deng, J. Y., Yao, J., Sun, D. Q., & Guo, L. X. (2018). Ten-element MIMO antenna for 5G terminals. Microwave Optical Technology Letters,60, 1–5.  https://doi.org/10.1002/mop.31404.CrossRefGoogle Scholar
  2. 2.
    Saxena, S., Kanaujia, B. K., Dwari, S., Kumar, S., & Tiwari, R. (2018). MIMO antenna with built-in circular shaped isolator for sub-6 GHz 5G applications. Electronics Letter,54, 478–480.  https://doi.org/10.1049/el.2017.4514.CrossRefGoogle Scholar
  3. 3.
    Ban, Y. L., Li, C., Sim, C. Y. D., Wu, G., & Wong, K. L. (2016). 4G/5G multiple antennas for future multi-mode smartphone applications. IEEE Access,4, 2981–2988.  https://doi.org/10.1109/ACCESS.2016.2582786.CrossRefGoogle Scholar
  4. 4.
    Li, Y, Sim, C. Y. D., Luo, Y., & Yang, G. (2019). High-isolation 3.5 GHz 8-antenna MIMO array using balanced open slot antenna element for 5G Smartphone. IEEE Transactions on Antennas and Propagation.  https://doi.org/10.1109/tap.2019.2902751.
  5. 5.
    Abdullah, M., Ban, Y. L., Kang, K., Li, M. Y., & Amin, M. (2017a). Compact four-port MIMO antenna system at 3.5 GHz.. In IEEE 2nd advanced information technology, electronic and automation control conference, Chongqing, China.  https://doi.org/10.1109/iaeac.2017.8054098.
  6. 6.
    Zhang, S., Ying, Z., Xiong, J., & He, S. (2009). Ultrawideband MIMO/diversity antennas with a tree-like structure to enhance wideband isolation. IEEE Antennas Wireless Propagation Letters,8, 1279–1282.  https://doi.org/10.1109/LAWP.2009.2037027.CrossRefGoogle Scholar
  7. 7.
    Chen, W. S., & Chang, Y. L. (2018). Small-size 5G C-band/WLAN5.2/5.8 GHz MIMO antennas for laptop computer applications. In IEEE international workshop on electromagnetics: Applications and student innovation competition, Nagoya, Japan.  https://doi.org/10.1109/iwem.2018.8536629.
  8. 8.
    Zhang, S., Lau, B. K., Tan, Y., Ying, Z., & He, S. (2012). Mutual coupling reduction of two PIFAs with a T-shape slot impedance transformer for MIMO mobile terminals. IEEE Transactions on Antennas and Propagation,60, 1521–1531.  https://doi.org/10.1109/TAP.2011.2180329.CrossRefGoogle Scholar
  9. 9.
    Abdullah, M., Ban, Y. L., Kang, K., Sarkodie, O. K. K. F., & Li, M. Y. (2017b). Compact 4 port MIMO antenna system for 5G mobile terminal. In IEEE international applied computational electromagnetics society symposium, Florence, Italy.  https://doi.org/10.23919/ropaces.2017.7916045.
  10. 10.
    Wong, K. L., & Lu, J. Y. (2015). 3.6 GHz 10-antenna array for MIMO operation in Smartphone. Microwave and Optical Technology Letters,57, 1699–1704.  https://doi.org/10.1002/mop.29181.CrossRefGoogle Scholar
  11. 11.
    Wong, K. L., Tsai, C. Y., & Lu, J. Y. (2017). Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in future Smartphone. IEEE Transactions on Antennas and Propagation,65, 1765–1778.  https://doi.org/10.1109/TAP.2017.2670534.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Alhadi, A. A., Ilvonen, J., Valkonen, R., & Viikari, V. (2014). Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500 MHz band. Microwave and Optical Technology Letters,56, 1324–1327.  https://doi.org/10.1002/mop.28316.CrossRefGoogle Scholar
  13. 13.
    Wang, H., Zhu, L., Wang, Y., & Yang, G. (2018) A hybrid PIFA/open-slot antenna array for the 3.5/4.9/5.8 GHz MIMO operation in the future 5G Smartphone applications. In International applied computational electromagnetics society symposium, Beijing, China.  https://doi.org/10.23919/acess.2018.8669139.
  14. 14.
    Xu, Z., Ding, C., Zhou, Q., Sun, Y., & Huang, S. (2019). A dual-band dual-antenna system with common-metal rim for smartphone applications. Electronics,8, 348.  https://doi.org/10.3390/electronics8030348.CrossRefGoogle Scholar
  15. 15.
    Dioum, I., Diallo, K., Diop, I., Sane,.L, & Ngom, A. (2018). Miniature MIMO antennas for 5G mobile terminals. In 6th international conference on multimedia computing and systems, Rabat, Morocco.  https://doi.org/10.1109/icmcs.2018.8525870.
  16. 16.
    Votis, C., Tatsis, G., & Kostarakis, P. (2010). Envelope correlation parameter measurements in a MIMO antenna array configuration. International Journal Communications, Network and System Sciences,3, 350–354.CrossRefGoogle Scholar
  17. 17.
    Sharawi, M. S. (2014). Printed MIMO antenna systems: Performance metrics, implementations and challenges. Forum for Electromagnetic Research Methods and Application Technologies,1, 1–11.Google Scholar
  18. 18.
    Alsaif, H., Usman, M., Chughtai, M. T., & Nasir, J. (2018). Cross Polarized 2x2 UWB-MIMO antenna system for 5G wireless applications. Progress in Electromagnetics Research M,76, 157–166.CrossRefGoogle Scholar
  19. 19.
    Biswas, A., Gupta, V. R. (2019a). Novel compact antenna for smartphone covering fifteen LTE bands. In International conference on electrical, communication, electronics, instrumentation and computing, Kanchipuram, India.Google Scholar
  20. 20.
    Biswas, A., Gupta, V.R. (2019b). Multiband antenna design for Smartphone covering 2G, 3G, 4G and 5G NR frequencies. In 3rd international conference on trends in electronics and informatics, Tirunelveli, India.Google Scholar
  21. 21.
    Shi, H., Zhang, X., Li, J., Jia, P., Chen, J., & Zhang, A. (2018). 3.6-GHz eight-antenna MIMO array for mobile terminal applications. International Journal of Electronics and Communications,95, 342–348.  https://doi.org/10.1016/j.aeue.2018.09.008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringBirla Institute of Technology, MesraRanchiIndia

Personalised recommendations