Advertisement

Design and Simulation of a Broadband Bandpass Filter Based on Complementary Split Ring Resonator Circular “CSRRs”

  • Kada BecharefEmail author
  • Keltouma Nouri
  • Habib Kandouci
  • Boubakar Seddik Bouazza
  • Mehdi Damou
  • Tayeb Habib Chawki Bouazza
Article
  • 7 Downloads

Abstract

The aim of this article was to design CSRRs (complementary split ring resonator) miniaturized metamaterial cells. These cells should then be associated with planar microwave devices to achieve microwave filters. First, we focused on the design and electromagnetic simulation of metamaterial including CSRR and rod metal. Simulations are performed using HFSS software based on the finite element method. For each cell, we presented the transmission and reflection coefficients obtained using this software. The second part is dedicated to the design of bandpass filter based on CSRRs. This filter contains a CSRR cavity and two metal stubs, designed to operate around 7 GHz. In order to obtain a powerful filter, we study the influence of the physical dimensions of the structure on the frequency response. This filter provided good performance in terms of bandwidth and adaptation.

Keywords

Metamaterials Design Complementary split ring resonators (CSRRs) Bandpass filter 

Notes

References

  1. 1.
    Lannebere S. (2011). Étude théorique de métamatériaux formés de particules diélectriques résonantes dans la gamme submillimétrique: Magnétisme artificiel et indice de réfraction négatif. Thèse pour obtenir le grade de docteur 30 Novembre 2011.Google Scholar
  2. 2.
    Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics-Uspekhi,10, 509–514.CrossRefGoogle Scholar
  3. 3.
    Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques,47, 2075–2084.CrossRefGoogle Scholar
  4. 4.
    Nicolson, A. M., & Ross, G. F. (1970). Measurement of the intrinsic properties of materials by Time-Domain techniques. Instrumentation and Measurement, IEEE Transactions on,19(4), 377–382.CrossRefGoogle Scholar
  5. 5.
    Smith, D. R., Schultz, S., Markos, P., & Soukoulis, C. M. (2002). Determination of effective permittivity and permeability of metamaterials from reflexion and transmission coefficients. Physical Review B,65, 195104.CrossRefGoogle Scholar
  6. 6.
    Sabah, C. (2010). Tunable metamaterial design composed of triangular Split Ring Resonator and wire strip for S and C microwave bands. Progress in Electromagnetics Research B,22, 341–357.CrossRefGoogle Scholar
  7. 7.
    Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters,84, 4184–4187.CrossRefGoogle Scholar
  8. 8.
    Kada, B., Keltouma, N., Boubakar seddik, B., Mehdi, D., & Chawki, B. T. H. (2017). Balance microwave LPF responses with CSRRs. Microwaves and RF, RF & Microwave Magazine Article Archive—2017, pp. 50–52.Google Scholar
  9. 9.
    Hayt, W. H., & Buck, J. A. (2001). Engineering Electromagnetics (6th ed.). New York: McGraw-Hill.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kada Becharef
    • 1
    Email author
  • Keltouma Nouri
    • 1
  • Habib Kandouci
    • 1
  • Boubakar Seddik Bouazza
    • 1
  • Mehdi Damou
    • 1
  • Tayeb Habib Chawki Bouazza
    • 1
  1. 1.LTC Laboratory, Department of Electronic, Faculty of TechnologyUniversity of Saida Dr. Moulay TaharSaidaAlgeria

Personalised recommendations