Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Analog Building Blocks Using QFGMOS Technique

  • 18 Accesses

Abstract

In this paper, quasi-floating gate MOSFET (QFGMOS) based current divider and pseudo-exponential function generator circuits are proposed. The use of QFGMOS makes the proposed circuits suitable for low voltage/low power operation. The proposed circuits have lower power supply voltage requirement, lower power dissipation and lower THD than the existing circuits available in literature. Both the circuits have been designed and simulated in Cadence virtuoso analog design environment using 180 nm CMOS technology. The simulation results have also been presented to validate the performance of the proposed circuits.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Rajput, S. S., & Jamuar, S. S. (2002). Low voltage analog circuit design techniques. IEEE Circuits and Systems Magazine, 2(1), 24–42.

  2. 2.

    Shouli, Y., & Sanchez-Sinencio, E. (2000). Low voltage analog circuit design techniques: A tutorial. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 83(2), 179–196.

  3. 3.

    Martinez-Nieto, J. A., Sanz-Pascual, M. T., Medrano-Marques, N. J., & Calvo-Lopez, B. (2016). Self-biased class AB CMOS current buffer. In Proceedings of the 7th IEEE Latin American symposium on circuits & systems (LASCAS), Florianopolis (pp. 255–258).

  4. 4.

    Keikhosravy, K., Kamalinejad, P., Harkness, D., Abdollahi, H., & Mirabbasi, S. (2016). A digitally assisted technique to improve rectifier efficiency in wireless energy harvesting systems. In Proceedings of the IEEE international conference on consumer electronics (ICCE), Las Vegas, NV (pp. 103–104).

  5. 5.

    Lopez-Martin, A., Orradre, D., Pilar Garde, M., Sanchis, P., Gubia, E., Perez, G., Astrain, D., & Ramirez-Angulo, J. (2015). Energy harvesting microsystems based on the QFG MOS transistors. In Proceedings of the 15th IEEE international conference on environment and electrical engineering (EEEIC), Rome (pp. 2035–2039).

  6. 6.

    Algueta-Miguel, J. M., De la Cruz Blas, C. A., Lopez-Martin, A. J., & Ramirez-Angulo, J. (2015). Design of CMOS amplifiers with offset rejection using positive-feedback QFG transistors. Analog Integrated Circuits and Signal Processing, 85(1), 217–221.

  7. 7.

    Sanchez-Rodriguez, T., Munoz, F., Galan, J., Lopez-Ahumada, R., & Carvajal, R. G. (2015). Low voltage linear tunable transconductor for high speed filters. Analog Integrated Circuits and Signal Processing, 82(1), 329–333.

  8. 8.

    Ramirez-Angulo, J., Urquidi, C. A., Gonzalez-Carvajal, R., Torralba, A., & Lopez-Martin, A. (2003). A new family of very low-voltage analog circuits based on quasi-floating-gate transistors. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 50(5), 214–220.

  9. 9.

    Munoz, F., Lopez-Martin, A., Carvajal, R. G., Ramirez-Angulol, J., Torralba, A., Kachare, M., & Palomo, B. (2003). Extremely low supply voltage circuits based on quasi-floating gate supply voltage boosting. In Proceedings of the IEEE international symposium on circuits and systems (ISCAS), Bangkok, Thailand (pp. I-817–I-820).

  10. 10.

    Ren, L., Zhu, Z., & Yang, Y. (2004). Design of ultra-low voltage op amp based on quasi-floating gate transistors. In Proceedings of the 7th IEEE international conference on solid-state and integrated circuits technology, Beijing, China (pp. 1465–1468).

  11. 11.

    Ramirez-Angulo, J., Lopez-Martin, A. J., Carvajal, R. G., & Chavero, F. M. (2004). Very low-voltage analog signal processing based on quasi-floating gate transistors. IEEE Journal of Solid-State Circuits, 39(3), 434–442.

  12. 12.

    Seo, I., & Fox, R. M. (2006). Comparison of quasi-/pseudo-floating gate techniques and low-voltage applications. Analog Integrated Circuits and Signal Processing, 47(2), 183–192.

  13. 13.

    Safari, L., & Azhari, S. J. (2011). An ultra low power, low voltage tailless QFG based differential amplifier with High CMRR, rail to rail operation and enhanced slew rate. Analog Integrated Circuits and Signal Processing, 67(2), 241–252.

  14. 14.

    Gupta, R., & Sharma, S. (2012). Quasi-floating gate MOSFET based low voltage current mirror. Microelectronics Journal, 43(7), 439–443.

  15. 15.

    Razaghian, F., & Bonakdarpour, S. (2012). Reducing the leakage current and PDP in the quasi-floating gate circuits. In Proceedings of the spring congress on engineering and technology (S-CET), Xian, China (pp. 1–4).

  16. 16.

    Gupta, R., & Sharma, S. (2013). Voltage controlled resistor using quasi-floating-gate MOSFETs. Maejo International Journal of Science and Technology, 7(1), 16–25.

  17. 17.

    Liu, W., & Liu, S. (2003). CMOS tunable 1/x circuit and its applications. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 86(7), 1896–1899.

  18. 18.

    Liu, W., Liu, W., Liu, S. I., & Wei, S. K. (2005). CMOS current-mode divider and its applications. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 52(3), 145–148.

  19. 19.

    Gupta, M., & Pandey, R. (2011). Low-voltage FGMOS based analog building blocks. Microelectronics Journal, 42(6), 903–912.

  20. 20.

    Kiran, B., & Pandey, R. (2016). Quasi-floating gate MOSFET based current-to-voltage converter. In Proceedings of the 4th international conference on advancements in engineering & technology (ICAET-2016) (pp. 238–241).

  21. 21.

    Ren, L., Zhu, Z., & Yang, Y. (2004). Design of ultra-low voltage op amp based on quasi-floating gate transistors. In Proceedings of the 7th international conference on solid-state and integrated circuits technology, Beijing, China (pp. 1465–1468).

  22. 22.

    Townsend, K. A., Haslett, J. W., & Iniewski, K. (2005). Design and optimization of low-voltage low-power quasi-floating gate digital circuits. In Proceedings of the fifth international workshop on system-on-chip for real-time applications (IWSOC’05), Alberta, Canada (pp. 132–136).

  23. 23.

    Urquidi, C., Urquidi, C., Ramirez-Angulo, J., Gonzalez-Carvajal, R., & Torralba, A. (2002). A new family of low-voltage circuits based on quasi-floating gate transistors. In Proceedings of the 45th IEEE midwest symposium on circuits and systems, USA (pp. 93–96).

  24. 24.

    Lopez-Martin, A. J., & Carlosena, A. (2001). Current-mode multiplier/divider circuits based on the MOS translinear principle. Analog Integrated Circuits and Signal Processing, 28(3), 265–278.

  25. 25.

    Duong, Q. H., & Lee, S. G. (2004). A 35 dB-linear exponential function generator for VGA and AGC applications. In Proceedings of the IEEE Asia and South Pacific design automation conference, Japan (pp. 304–306).

Download references

Author information

Correspondence to Rishikesh Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pandey, R., Kiran, B. Analog Building Blocks Using QFGMOS Technique. Wireless Pers Commun (2019). https://doi.org/10.1007/s11277-019-06898-7

Download citation

Keywords

  • Analog circuits
  • Circuit simulation
  • CMOS technology
  • Current divider
  • Function generator
  • Harmonic distortion