Effective User-Pair Association Schemes for Relay-Based Multi-tier Heterogeneous Networks with Physical Layer Security

  • Xiangdong JiaEmail author
  • Xiaorong Yang
  • Wenjuan Xu


This paper focuses on relay-assisted multi-tier heterogeneous networks (HetNets) in term of feasible user-pair association (UPA) criterions and physical layer secrecy analysis. In the interesting relay-assisted multi-tier HetNets, the randomly located mobile user-pair communicates with the help of the relay of its associated tier. We model the locations of all network elements as independent Poisson point process. For such relay-assisted HetNets, similar to the nearest relay defined for user association in traditional single-hop HetNets, we define the so-called best relay in each tier for a typical mobile user-pair by using the equivalent end-to-end biased received power (BRP). Then based on the defined best-relay, we first propose the max–min user-pair association (MM-UPA) criterion. Due to the fact that the MM-UPA criterion is dominated by the bottleneck link’s BRP and does not exploit the joint effect of both the source-relay and relay-destination links, we present the maximum harmonic mean user-pair association (MHM-UPA) criterion, again. For the two UPA criterions, by using feasible mathematical analysis, we derive the corresponding UPA probabilities. Finally, as an implement of the two proposed UPA criterions, by using stochastic geometry, we perform the secrecy performance analysis of the considered relay-assisted multi-tier HetNets. The presented numerical analysis first validates our derivations through the comparison analysis with traditional single-hop user association criterion. At the same time, we also present the comparison analysis between the two proposed MM-UPA and MHM-UPA criterions. It is found that when the transmission power \(P_{R(S)}^{k}\) is small, the MHM-UPA scheme outperforms the MM-UPA one in term of UPA probability. On the contrary, the two schemes achieve approximately the same UPA probability. For the total secrecy probability, we find that when transmit power is small, the MHM-UPA achieves the higher secrecy probabilities. Moreover, the achieved gain by MHM-UPA is increasing with the decrease of transmission power. Contrarily, when the transmission power is large, although the MM-UPA outperforms the MHM-UPA, the achieved gain by MM-UPA cover MHM-UPA is small.


HetNets Relay cooperation User-pair association criterion Physical layer secrecy 



This work was supported by the Natural Science Foundation of China under Grants 61561043, 61861039, 61261015, the Science and technology plan Foundation of Gansu Province of China under Grant 18YF1GA060, the program of improving the scientific research ability of young teachers in Northwest Normal University: “Key technologies of next generation wireless networks”.


  1. 1.
    Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRefGoogle Scholar
  2. 2.
    Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine, 52(5), 94–101.CrossRefGoogle Scholar
  3. 3.
    Wang, S. W., & Sun, Y. (2017). Enhancing performance of heterogeneous cloud radio access networks with efficient user association. In Proceeding of the ICC (pp. 1–6).Google Scholar
  4. 4.
    Chen, S. Y., Zhao, T. Y., Chen, H. H., Lu, Z. P., & Meng, W. X. (2017). Performance analysis of downlink coordinated multipoint joint transmission in ultra-dense networks. IEEE Network, 31(5), 106–114.CrossRefGoogle Scholar
  5. 5.
    Wang, S. W., & Ran, C. (2016). Rethinking cellular network planning and optimization. IEEE Wireless Communications, 23(2), 118–125.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Goyal, S. J., Mezzavilla, M., Rangan, S., Panwar, S., & Zorzi, M. (2017). User association in 5G mmwave networks. In IEEE Wireless Communications and Networking Conference (pp. 1–6).Google Scholar
  7. 7.
    Liu, D. T., Wang, L. F., Chen, Y., Elkashlan, M., Wong, K. K., Schober, R., et al. (2016). User association in 5G networks: A survey and an outlook. IEEE Communications Surveys & Tutorials, 18(2), 1018–1044.CrossRefGoogle Scholar
  8. 8.
    Andrews, J. G., Singh, S., & Ye, Q. Y. (2014). An overview of load balancing in HetNets: Old myths and open problems. IEEE Wireless Communications, 21(2), 18–25.CrossRefGoogle Scholar
  9. 9.
    Gong, J., Thompson, J. S., Zhou, S., & Niu, Z. S. (2014). Base station sleeping and resource allocation in renewable energy powered cellular networks. IEEE Transactions on Communications, 62(11), 3801–3813.CrossRefGoogle Scholar
  10. 10.
    Yang, Y., Chen, L., Dong, W. X., & Wang, W. D. (2015). Active base station set optimization for minimal energy consumption in green cellular networks. IEEE Transactions on Vehicular Technology, 64(11), 5340–5349.CrossRefGoogle Scholar
  11. 11.
    Tabassum, H., Siddique, U., Hossain, E., & Hossain, M. J. (2014). Downlink performance of cellular systems with base station sleeping, user association, and scheduling. IEEE Transactions on Wireless Communications, 13(10), 5752–5767.CrossRefGoogle Scholar
  12. 12.
    3GPP TR 36.912 V2.0.0. (2009). Technical specification group radio access network; requirements for further advancements for evolved universal terrestrial radio access (E-UTRA) (LTE-advanced) (Release 9). 3rd Generation Partnership Project (3GPP).Google Scholar
  13. 13.
    Chen, Y. J., Li, J., Lin, Z. H., Mao, G. Q., & Vucetic, B. (2016). User association with unequal user priorities in heterogeneous cellular networks. IEEE Transactions on Vehicular Technology, 65(9), 7374–7388.CrossRefGoogle Scholar
  14. 14.
    Khandekar, A., Bhushan, N., Ji, T. F., & Vanghi, V. (2010). LTE-advanced: Heterogeneous networks. In Proceedings of the WC (pp. 978–982).Google Scholar
  15. 15.
    Jo, H. S., Sang, Y. J., Xia, P., & Andrews, J. G. (2011). Outage probability for heterogeneous cellular networks with biased cell association. In Proceedings of global telecommunications conference (pp. 1–5).Google Scholar
  16. 16.
    Fooladivanda, D., & Rosenberg, C. (2012). Joint resource allocation and user association for heterogeneous wireless cellular networks. IEEE Transactions on Wireless Communications, 12(1), 248–257.CrossRefGoogle Scholar
  17. 17.
    Jha, S. C., Sivanesan, K., Vannithamby, R., Koc, A. T. (2014). Dual connectivity in LTE small cell networks. In Proceedings of the Globecom Workshops (pp. 1205–1210).Google Scholar
  18. 18.
    Sekander, S., Tabassum, H., & Hossain, E. (2016). Decoupled uplink-downlink user association in multi-tier full-duplex cellular networks: A two-sided matching game. IEEE Transactions Mobile on Computing, 16(10), 2778–2791.CrossRefGoogle Scholar
  19. 19.
    Semiari, O., Saad, W., Valentin, S., Bennis, M., & Maham, B. (2014). Matching theory for priority-based cell association in the downlink of wireless small cell networks. In Proceedings of acoustics, speech, and signal processing (pp. 444–448).Google Scholar
  20. 20.
    Jia, X. D., Fu, H., & Yang, L. X. (2010). Superposition coding cooperative relaying communications: Outage performance analysis. The International Journal of Communication Systems, 24(3), 384–397.CrossRefGoogle Scholar
  21. 21.
    Jia, X. D., & Yang, L. X. (2012). Upper and lower bounds of two-way opportunistic amplify-and-forward relaying channels. IEEE Communications Letters, 16(8), 1180–1183.CrossRefGoogle Scholar
  22. 22.
    Jia, X. D., Yang, L. X., & Zhu, H. B. (2014). Cognitive opportunistic relaying systems with mobile nodes: Average outage rates and outage durations. IET Communications, 8(6), 789–799.CrossRefGoogle Scholar
  23. 23.
    Ali, M., Qaisar, S., Naeem, M., & Mumtaz, S. (2016). Energy efficient resource allocation in D2D-assisted heterogeneous networks with relays. IEEE Access, 4, 4902–4911.CrossRefGoogle Scholar
  24. 24.
    Al-Hourani, A., Kandeepan, S., & Hossain, E. (2016). Relay-assisted device-to-device communication: A stochastic analysis of energy saving. IEEE Transactions Mobile on Computing, 15(12), 3129–3141.CrossRefGoogle Scholar
  25. 25.
    Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communication Surveys & Tutorials, 18(3), 1617–1655.CrossRefGoogle Scholar
  26. 26.
    Wang, C. X., Haider, F., Gao, X. Q., You, X. H., Yang, Y., Yuan, D. F., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.CrossRefGoogle Scholar
  27. 27.
    Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.CrossRefGoogle Scholar
  28. 28.
    Jo, H. S., Sang, Y. J., & Xia, P. (2012). Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Trans. Wirel. Commun, 11(10), 3484–3495.CrossRefGoogle Scholar
  29. 29.
    Dhillon, H. S., Ganti, R. K., & Baccelli, F. (2012). Modeling and analysis of k-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 30(3), 550–560.CrossRefGoogle Scholar
  30. 30.
    Hung, H. J., Ho, T. Y., Lee, S. Y., Yang, C. Y., & Yang, D. N. (2017). Relay selection for heterogeneous cellular networks with renewable green energy sources. IEEE Transactions on Mobile Computing, 17(3), 661–674.CrossRefGoogle Scholar
  31. 31.
    Stoyan, D., Kendall, W., & Mecke, J. (1987). Stochastic geometry and its applications. Berlin: Wiley.zbMATHGoogle Scholar
  32. 32.
    Andrews, J. G., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications, 59(11), 3122–3134.CrossRefGoogle Scholar
  33. 33.
    Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Renzo, M. D. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine, 53(4), 20–27.CrossRefGoogle Scholar
  34. 34.
    Barros, J., & Rodrigues, M. R. D. (2006). Secrecy capacity of wireless channels. In IEEE international symposium on information theory (pp. 356–360).Google Scholar
  35. 35.
    Mukherjee, A., Fakoorian, S. A. A., Jing, H., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1550–1573.CrossRefGoogle Scholar
  36. 36.
    Shiu, Y. S., Chang, S. Y., Wu, H. C., Huang, S. C. H., & Chen, H. H. (2011). Physical layer security in wireless networks: A tutorial. IEEE Wireless Communications, 18(2), 66–74.CrossRefGoogle Scholar
  37. 37.
    Wang, H. M., Zheng, T. X., Yuan, J., Towsley, D., & Lee, M. H. (2016). Physical layer security in heterogeneous cellular networks. IEEE Transactions on Communications, 64(3), 1204–1219.CrossRefGoogle Scholar
  38. 38.
    Wu, H. C., Tao, X. F., Li, N., & Xu, J. (2016). Secrecy outage probability in multi-RAT heterogeneous networks. IEEE Communications Letters, 20(1), 53–56.CrossRefGoogle Scholar
  39. 39.
    Tolossa, Y. J., Vuppala, S., & Abreu, G. (2017). Secrecy rate analysis in multi-tier heterogeneous networks over generalized fading model. IEEE Internet of Things (IoT) Journal, 4(1), 101–110.Google Scholar
  40. 40.
    Kamel, M., Hamouda, W., & Youssef, A. (2017). Physical layer security in ultra-dense networks. IEEE Wireless Communications Letters, 6(5), 1–1.CrossRefGoogle Scholar
  41. 41.
    Chen, J., Chen, X. M., Gerstacker, W. H., & Ng, D. W. K. (2016). Resource allocation for a massive MIMO relay aided secure communication. IEEE Transactions on Information Forensics and Security, 11(8), 1700–1711.CrossRefGoogle Scholar
  42. 42.
    He, H. L., Ren, P. Y., Du, Q. H., & Sun, L. (2016). Full-Duplex or half-duplex? Hybrid relay selection for physical layer secrecy. In IEEE 83rd vehicular technology conference (pp. 1–5).Google Scholar
  43. 43.
    Duong, T. Q., Zepernick, H. J., Tsiftsis, T. A., & Bao, V. N. Q. (2010). Amplify-and-forward MIMO relaying with OSTBC over Nakagami-m fading channels. Proceedings of IEEE International Conference on Communications, 29(16), 1–6.Google Scholar
  44. 44.
    Bao, V. N. Q., Duong, T. Q., Costa, D. B. D., Alexandropoulos, G. C., & Nallanathan, A. (2013). Cognitive amplify-and-forward relaying with best relay selection in non-identical Rayleigh fading. IEEE Communications Letters, 17(3), 475–478.CrossRefGoogle Scholar
  45. 45.
    Duong, T. Q., & Zepernick, H. (2009). On the performance of selection decode-and-forward relay networks over Nakagami-m fading channels. IEEE Communications Letters, 13(3), 172–174.CrossRefGoogle Scholar
  46. 46.
    Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products. Cambridge: Academic Press.zbMATHGoogle Scholar
  47. 47.
    David, H. A., & Nagaraja, H. N. (2003). Order statistics. New York: Wiley.CrossRefGoogle Scholar
  48. 48.
    Haenggi, M., & Ganti, R. K. (2009). Interference in large wireless networks. Foundations and Trends in Networking, 3(2), 127–248.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Computer Science and EngineeringNorthwest Normal UniversityLanzhouChina
  2. 2.Wireless Communication Key Lab of Jiangsu ProvinceNanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations