Multiple Kernel Based Remote Sensing Vegetation Classifier with Levy Optimized Subspace

  • V. Shenbaga PriyaEmail author
  • D. Ramyachitra


Vegetation classification in remote sensing (RS) applications details a rich source of information on land use/land cover decision making. To classify the mixed land-cover area of diverse categories through RS imagery, robust classification methods and their techniques act as a substratum for thematic interpretation. Though many classification techniques have been raised for the study of remote sensing images, support vector machine (SVM) has received huge attention. In order to handle non-linear separable high dimensional feature space, optimized subspace-based classifier acts as a bedrock for improved accuracy as accuracy is still a primary concern to design efficient classifiers for nonlinear separable feature space. In this work, a classifier Enhanced Entropy based Multiple Kernel Support Vector Machine with Levy optimized subspace has experimented for vegetation classification. Since SVMs are a typically linear methods, they can be easily derived into non-linear decision criteria by substituting the inner products with kernel functions. The results indicate that the proposed method is getting better accuracy than the existing Methods.


Remote sensing Vegetation classification Feature subspace Support Vector Machine Levy optimized subspace Enhanced Entropy based Multiple Kernel Support Vector Machine (EEMK-SVM) classifier 



  1. 1.
    Maulik, U., & Chakraborty, D. (2017). A survey of support vector machine-based advanced techniques. IEEE Geoscience and Remote Sensing Magazine, 20, 33–52.CrossRefGoogle Scholar
  2. 2.
    Huang, L., Fang, Y., Zuo, X., Yu, X., & Lu, S. (2013). Edge information detection of remote sensing image based on two-dimensional Otsu algorithm. Journal of Information and Computational Science, 10, 5381–5390.CrossRefGoogle Scholar
  3. 3.
    Sureshkumar, N., & Arun, M. (2015). Enhanced classification algorithms for the satellite image processing. Indian Journal of Science and Technology, 2015, 1–9.Google Scholar
  4. 4.
    Jia, X., Kuo, B. C., & Crawford, M. M. (2013). Feature mining for hyperspectral image classification. Proceedings of the IEEE, 101(3), 676–697.CrossRefGoogle Scholar
  5. 5.
    Maulik, U., & Bandyopadhyay, S. (2003). Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Transactions on Geoscience and Remote Sensing, 41, 1075–1081.CrossRefGoogle Scholar
  6. 6.
    Huo, H., Guo, J., & Li, Z. L. (2018). Hyperspectral image classification for land cover based on an improved interval type-II fuzzy C-means approach. Sensors, 18(2), 363.CrossRefGoogle Scholar
  7. 7.
    Haykin, S. (1999). Neural networks: A comprehensive foundation. Englewood Cliffs, NJ: Prentice-Hall.zbMATHGoogle Scholar
  8. 8.
    Camps-Valls, G., & Bruzzone, L. (Eds.). (2009). Kernel methods for remote sensing data analysis. New York: Wiley.zbMATHGoogle Scholar
  9. 9.
    Puletti, N., Camarretta, N., & Corona, P. (2016). Evaluating EO1-Hyperion capability for mapping conifer and broadleaved forests. European Journal of Remote Sensing, 49(1), 157–169.CrossRefGoogle Scholar
  10. 10.
    Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259.CrossRefGoogle Scholar
  11. 11.
    Gualtieri, A., & Cromp, R. F. (1998). Support vector machines for hyperspectral remote sensing classification. In Proceedings of society of photo-optical instrumentation engineers 27th applied imagery pattern recognition workshop, pp. 221–232.Google Scholar
  12. 12.
    Tang, J., Alelyani, S., & Liu, H. (2014). Feature selection for classification: A review. Data Classification: Algorithms and Applications, 2014, 37.zbMATHGoogle Scholar
  13. 13.
    Pahasa, J., & Ngamroo, I. (2012). PSO based kernel principal component analysis and multi-class support vector machine for power quality problem classification. International Journal of Innovative Computing, Information and Control, 8(3), 1523–1539.Google Scholar
  14. 14.
    Mika, S., Ratsch, G. Schölkopf, B., Smola, A., Weston, J., & Muller, K.-R. (1999). Invariant feature extraction and classification in kernel spaces. In Advances in neural information processing systems, MIT Press, Cambridge, MA.Google Scholar
  15. 15.
    Dundar, M. M., & Landgrebe, D. A. (2004). A cost-effective semi-supervised classifier approach with kernels. IEEE Transactions on Geoscience and Remote Sensing, 42(1), 264–270.CrossRefGoogle Scholar
  16. 16.
    Camps-Valls, G., & Bruzzone, L. (2005). Kernel-based methods for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 43(6), 1351–1362.CrossRefGoogle Scholar
  17. 17.
    Lanckriet, G. R., De Bie, T., Cristianini, N., Jordan, M. I., & Noble, W. S. (2004). A statistical framework for genomic data fusion. Bioinformatics, 20(16), 2626–2635.CrossRefGoogle Scholar
  18. 18.
    Sonnenburg, S., Rätsch, G., Schäfer, C., & Schölkopf, B. (2006). Large scale multiple kernel learning. Journal of Machine Learning Research, 7, 1531–1565.MathSciNetzbMATHGoogle Scholar
  19. 19.
    Zhang, Y., Yang, H. L., Prasad, S., Pasolli, E., Jung, J., & Crawford, M. (2014). Ensemble multiple kernel active learning for classification of multisource remote sensing data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2), 845–858.CrossRefGoogle Scholar
  20. 20.
    Masaeli, M., Dy, J. G., & Fung, G. M. (2010). From transformation-based dimensionality reduction to feature selection. In Proceedings of the 27th international conference on machine learning, pp. 751–758.Google Scholar
  21. 21.
    Dara, S., Banka, H., & Annavarapu, C. S. (2017). A rough based hybrid binary PSO algorithm for flat feature selection and classification in gene expression data. Berlin: Springer.CrossRefGoogle Scholar
  22. 22.
    Hafiz, F., Swain, A. K., & Naik, C. A. (2017). A two-dimensional (2-D) learning frameworkfor particle swarm based feature selection. Pattern Recognition. Google Scholar
  23. 23.
    Demidova, L., Nikulchev, E., & Sokolova, Y. (2016). The SVM classifier based on the modified particle swarm optimization. International Journal of Advanced Computer Science and Applications.Google Scholar
  24. 24.
    Chowdhury, S., Verma, B., & Stockwell, D. (2015). A novel texture feature based multiple classifier technique for roadside vegetation classification. Expert Systems with Applications, 42(12), 5047–5055.CrossRefGoogle Scholar
  25. 25.
    Butt, A., Shabbir, R., Ahmad, S. S., & Aziz, N. (2015). Land use change mapping and analysis using remote sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 18(2), 127–312.CrossRefGoogle Scholar
  26. 26.
    Domaç, A., & Süzen, M. L. (2006). Integration of environmental variables with satellite images in regional scale vegetation classification. International Journal of Remote Sensing, 27(7), 1329–1350.CrossRefGoogle Scholar
  27. 27.
    Filippi, A. M., & Jensen, J. R. (2006). Fuzzy learning vector quantization for hyperspectral coastal vegetation classification. Remote Sensing of Environment, 100(4), 512–530.CrossRefGoogle Scholar
  28. 28.
    Xu, M., Watanachaturaporn, P., Varshney, P. K., & Arora, M. K. (2005). Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment, 97(3), 322–336.CrossRefGoogle Scholar
  29. 29.
    Colditz, R. R., Wehrmann, T., Bachmann, M., Steinnocher, K., Schmidt, M., Strunz, G., et al. (2006). Influence of image fusion approaches on classification accuracy: A case study. International Journal of Remote Sensing, 27(15), 3311–3335.CrossRefGoogle Scholar
  30. 30.
    Zhu, L., & Tateishi, R. (2006). Fusion of multisensor multitemporal satellite data for land cover mapping. International Journal of Remote Sensing, 27(05), 903–918.CrossRefGoogle Scholar
  31. 31.
    Tan, K., Zhou, S., & Du, Q. (2015). Semisupervised discriminant analysis for hyperspectral imagery with block-sparse graph. IEEE Geoscience and Remote Sensing Letters, 12(8), 1765–1769.CrossRefGoogle Scholar
  32. 32.
    Gevaert, C., Persello, C., & Vosselman, G. (2016). Optimizing multiple kernel learning for the classification of UAV data. Remote Sensing, 8(12), 1025.CrossRefGoogle Scholar
  33. 33.
    Wang, Q., Gu, Y., & Tuia, D. (2016). Discriminative multiple kernel learning for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 54(7), 3912–3927.CrossRefGoogle Scholar
  34. 34.
    Gu, Y., Wang, C., You, D., Zhang, Y., Wang, S., & Zhang, Y. (2012). Representative multiple kernel learning for classification in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 50(7), 2852–2865.CrossRefGoogle Scholar
  35. 35.
    Mahanipour, A., & Nezamabadi-Pour, H. (2017). Improved Pso-based feature construction algorithm using feature selection methods. In IEEE.Google Scholar
  36. 36.
    Kumar, S., & Kumar, H. (2017). Rapid PSO based features selection for classification. International Journal of Advanced Research in Computer Science, 8(9).Google Scholar
  37. 37.
    Pham, D. L., & Prince, J. L. (1999). An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognition Letters, 20(1), 57–68.CrossRefGoogle Scholar
  38. 38.
    Shamsi, H., & Seyedarabi, H. (2012). A modified fuzzy C-means clustering with spatial information for image segmentation. International Journal of Computer Theory and Engineering, 4(5), 762.CrossRefGoogle Scholar
  39. 39.
    Panda, B., Sahoo, S., & Patnaik, S. K. (2013). A comparative study of hard and soft clustering using swarm optimization. International Journal of Scientific & Engineering Research, 4(10), 785–790.Google Scholar
  40. 40.
    Maguluri, L. P., Begum, S. S., & Rao, T. V. (2013). A novel based fuzzy clustering algorithms for classification remote sensing images. International Journal of Scientific & Engineering Research, 4(6), 213–225.Google Scholar
  41. 41.
    Priya, V. S., & Ramyachitra, D. (2018). Modified genetic algorithm (MGA) based feature selection with mean weighted least squares twin support vector machine (MW-LSTSVM) approach for vegetation classification. Cluster Computing, 2018, 1–3.Google Scholar
  42. 42.
    Huang, L., Yu, X., & Zuo, X. (2017). Edge detection in UAV remote sensing images using the method integrating Zernike moments with clustering algorithms. International Journal of Aerospace Engineering, 2017, 1–7.Google Scholar
  43. 43.
    Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, (6), 610–621.Google Scholar
  44. 44.
    Shijin Kumar, P. S., & Dharun, V. S. (2017). Extraction of texture features using GLCM and shape features using connected regions. International Journal of Engineering and Technology.Google Scholar
  45. 45.
    Huang, X., Liu, X., & Zhang, L. (2014). A multichannel gray level co-occurrence matrix for multi/hyperspectral image texture representation. Remote Sensing, 6(9), 8424–8445.CrossRefGoogle Scholar
  46. 46.
    Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC3(6), 610–621.CrossRefGoogle Scholar
  47. 47.
    Cui, Z., & Xu, Y. (2012). Social emotional optimisation algorithm with Levy distribution. International Journal of Wireless and Mobile Computing, 5(4), 394–400.CrossRefGoogle Scholar
  48. 48.
    Yan, X., Zhu, Z., & Wu, Q. An improved particle swarm optimization algorithm.Google Scholar
  49. 49.
    Muller, K. R., Mika, S., Ratsch, G., Tsuda, K., & Scholkopf, B. (2001). An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12(2), 181–201.CrossRefGoogle Scholar
  50. 50.
    Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  51. 51.
    Devroye, L., Gyorfi, L., & Lugosi, G. (2013). A probabilistic theory of pattern recognition (pp. 46–59). Springer.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Applications, School of Computer, Information and Mathematical SciencesB. S. Abdur Rahman Crescent Institute Of Science And TechnologyChennaiIndia
  2. 2.Department of Computer Science, School of Computer Science and EngineeringBharathiar UniversityCoimbatoreIndia

Personalised recommendations