Advertisement

An Improved SIP Authenticated Key Agreement Based on Dongqing et al.

  • Mahmood Ul Hassan
  • Shehzad Ashraf Chaudhry
  • Azeem IrshadEmail author
Article
  • 19 Downloads

Abstract

The IP multimedia subsystem represents an architectural framework to support multimedia-based services using internet protocol over wired and wireless media. These IP-based multimedia services rely on session initiation protocol (SIP) for creating, maintaining and terminating the communicative sessions, which underscores the efficiency and security of SIP protocol. Many SIP based authentication schemes have been put forward in the last decade, however with many limitations. Recently, Lu et al. and Chaudhary et al. presented SIP based authentication protocols. Then, Dongqing et al. discovered limitations in Lu et al. and Chaudhary et al. schemes, and presented an improved SIP authentication protocol. Nonetheless, we ascertain that Dongqing et al.’s protocol is prone to privileged insider attack, denial of service attack, and session specific ephemeral secret-leakage attack. Besides, this protocol assumes a strictly time synchronized system, which limits the practical effectiveness of the protocol for a real environment. We also propose an improved SIP authentication protocol that covers the limitations of Dongqing et al. protocol. Our scheme is formally proved as secure using BAN logic analysis. The performance analysis illustrates the comparison for related schemes with proposed scheme, which depicts the efficiency and robustness of the scheme over previous schemes.

Keywords

Session initiation protocol Internet multimedia subsystem Authentication Cryptography Cryptanalysis Attacks 

Notes

References

  1. 1.
    3rd Generation Partnership Project: Technical Specification Group Services and System Aspects; IP multimedia subsystem (IMS). 3GPP TS 23.228 V11.4.0 (2012).Google Scholar
  2. 2.
    Poikselkä, M., Niemi, A., Khartabil, H., & Mayer, G. (2007). The IMS: IP multimedia concepts and services (2nd Edn.). ISBN: 978-0-470-03183-4.Google Scholar
  3. 3.
    Arkko, J., Torvinen, V., Camarillo, G., Niemi, A., & Haukka, T. (2003). Security mechanism agreement for the session initiation protocol (sip). Cognitiva,12(1), 37–61.Google Scholar
  4. 4.
    Salsano, S., Veltri, L., & Papalilo, D. (2002). SIP security issues: The SIP authentication procedure and its processing load. Piscataway: IEEE Press.Google Scholar
  5. 5.
    Chaudhry, S. A., Naqvi, H., Sher, M., Farash, M. S., & Hassan, M. U. (2015). An improved and provably secure privacy preserving authentication protocol for sip. Peer-to-Peer Networking and Applications,10, 1–15.CrossRefGoogle Scholar
  6. 6.
    Yi, P. L., & Wang, S. S. (2010). A new secure password authenticated key agreement scheme for sip using self-certified public keys on elliptic curves. Computer Communications,33(3), 372–380.CrossRefGoogle Scholar
  7. 7.
    Thomas, M. (2001). SIP security requirements. IETF Intemet dren (draftthomas-sip-sec-reg’OO. txt).Google Scholar
  8. 8.
    Yoon, E. J., Shin, Y. N., Il, S. J., & Yoo, K. Y. (2010). Robust mutual authentication with a key agreement scheme for the session initiation protocol. IETE Technical Review,27(3), 203–213.CrossRefGoogle Scholar
  9. 9.
    Leach, P. J., Franks, J., Luotonen, A., Hallam-Baker, P. M., Lawrence, S. D., Hostetler, J. L., & Stewart, L. C. (1999). HTTP authentication: Basic and digest access authentication.Google Scholar
  10. 10.
    Yang, C. C., Wang, R. C., & Liu, W. T. (2005). Secure authentication scheme for session initiation protocol. Computers & Security,24(5), 381–386.CrossRefGoogle Scholar
  11. 11.
    Denning, D. E., & Sacco, G. M. (1981). Timestamps in key distribution systems. Communications of the ACM,24(8), 533–536.CrossRefGoogle Scholar
  12. 12.
    He, D., Chen, J., & Chen, Y. (2012). A secure mutual authentication scheme for session initiation protocol using elliptic curve cryptography. Security and Communication Networks,5(12), 1423–1429.CrossRefGoogle Scholar
  13. 13.
    Durlanik, A., & Sogukpinar, I. (2005). Sip authentication scheme using ecdh. Screen,137, 3367.Google Scholar
  14. 14.
    Liufei, W., Zhang, Y., & Wang, F. (2009). A new provably secure authentication and key agreement protocol for sip using ecc. Computer Standards & Interfaces,31(2), 286–291.CrossRefGoogle Scholar
  15. 15.
    Yoon, E. J., Yoo, K. Y., Kim, C., Hong, Y. S., Jo, M., & Chen, H. H. (2010). A secure and efficient sip authentication scheme for converged voip networks. Computer Communications,33(14), 1674–1681.CrossRefGoogle Scholar
  16. 16.
    Gokhroo, M. K., Jaidhar, C. D., & Tomar, A. S. (2011). Cryptanalysis of sip secure and efficient authentication scheme. In: IEEE international conference on communication software and networks, pp. 308–310.Google Scholar
  17. 17.
    Pu, Q. (2010). Weaknesses of SIP authentication scheme for converged VoIP networks. IACR Cryptol ePrint Arch, 464.Google Scholar
  18. 18.
    Jia, L. T. (2009). Efficient nonce-based authentication scheme for session initiation protocol. International Journal of Network Security,8(1), 12–16.Google Scholar
  19. 19.
    Arshad, R., & Ikram, N. (2013). Elliptic curve cryptography based mutual authentication scheme for session initiation protocol. Multimedia Tools and Applications,66(2), 165–178.CrossRefGoogle Scholar
  20. 20.
    Chen, T., Yeh, H., Liu, P., Hsiang, H., & Shih, W. (2010). A secured authentication protocol for sip using elliptic curves cryptography. Communications in Computer and Information Science,119, 46–55.CrossRefGoogle Scholar
  21. 21.
    Lin, C. L., & Hwang, T. (2003). A password authentication scheme with secure password updating. Computers & Security,22(1), 68–72.CrossRefGoogle Scholar
  22. 22.
    Yoon, E. J., & Yoo, K. Y. (2009). Cryptanalysis of ds-sip authentication scheme using ecdh. In: International conference on new trends in information and service science, pp. 642–647.Google Scholar
  23. 23.
    Xie, Q. (2012). A new authenticated key agreement for session initiation protocol. International Journal of Communication Systems,25(1), 47–54.CrossRefGoogle Scholar
  24. 24.
    Farash, M. S., & Attari, M. A. (2013). An enhanced authenticated key agreement for session initiation protocol. Information Technology And Control,42(4), 333–342.CrossRefGoogle Scholar
  25. 25.
    Zhang, Z., Qi, Q., Kumar, N., Chilamkurti, N., & Jeong, H. Y. (2015). A secure authentication scheme with anonymity for session initiation protocol using elliptic curve cryptography. Multimedia Tools and Applications,74(10), 3477–3488.CrossRefGoogle Scholar
  26. 26.
    Yanrong, L., Li, L., Peng, H., & Yang, Y. (2016). A secure and efficient mutual authentication scheme for session initiation protocol. Peer-to-Peer Networking and Applications,9(2), 1–11.Google Scholar
  27. 27.
    Chaudhry, S. A., Khan, I., Irshad, A., Ashraf, M. U., Khan, M. K., & Ahmad, H. F. (2016). A provably secure anonymous authentication scheme for session initiation protocol. Security and Communication Networks,9, 5016–5027.CrossRefGoogle Scholar
  28. 28.
    Xu, D., Zhang, S., Chen, J., & Ma, M. (2017). A provably secure anonymous mutual authentication scheme with key agreement for SIP using ECC. Peer-to-Peer Networking and Applications,11, 837–847.CrossRefGoogle Scholar
  29. 29.
    Vanstone, A. (1997). Elliptic curve cryptosystem—The answer to strong, fast public-key cryptography for securing constrained environments. Information Security Technical Report,2(2), 78–87.CrossRefGoogle Scholar
  30. 30.
    Lumini, A., & Loris, N. (2007). An improved Bio-hashing for human authentication. Pattern Recognition,40(3), 1057–1065.zbMATHCrossRefGoogle Scholar
  31. 31.
    Jin, A. T. B., Ling, D. N. C., & Goh, A. (2004). Bio-hashing: Two factor authentication featuring fingerprint data and tokenised random number. Pattern Recognition,37(11), 2245–2255.CrossRefGoogle Scholar
  32. 32.
    Odelu, V., Das, A. K., & Goswami, A. (2014). A secure effective key management scheme for dynamic access control in a large leaf class hierarchy. Information Sciences,269(4), 270–285.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Mansoor, K., Ghani, A., Chaudhry, S. A., Shamshirband, S., & Ghayyur, S. A. K. (2019). Securing IoT based RFID systems: A robust authentication protocol using symmetric cryptography. Sensors, 19(21), 4752.  https://doi.org/10.3390/s19214752.CrossRefGoogle Scholar
  34. 34.
    Ghani, A., Mansoor, K., Mehmood, S., Chaudhry, S. A., & Rahman, A. U. (2019). M Najmus Saqib, Security and key management in IoT based wireless sensor networks: An authentication protocol using symmetric key. International Journal of Communication Systems, 32(16), e4139.  https://doi.org/10.1002/dac.4139.CrossRefGoogle Scholar
  35. 35.
    Burrows, M., Abadi, M., & Needham, R. M. (1871). A logic of authentication. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1989(426), 233–271.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Computer Science and Software EngineeringInternational Islamic UniversityIslamabadPakistan
  2. 2.Department of Computer EngineeringIstanbul Gelisim UniversityIstanbulTurkey
  3. 3.Department of Computer ScienceUniversity of SialkotSialkotPakistan

Personalised recommendations