Battery Recovery-Aware Optimization for Embedded System Communications

  • Mohammed AssaouyEmail author
  • Ouadoudi Zytoune
  • Mohamed Ouadou


In this paper, we consider a point-to-point wireless communications for embedded battery powered systems. We aim to provide an optimal use of all the usable capacity inside the battery before it becomes exhausted. For this purpose, we exploit the recovery effect to extend their lifetime. We consider a stochastic battery model and use both dynamic programming and reinforcement learning approaches to compute optimal transmission policies for wireless sensor networks. The obtained results show that the expected total transmitted data and the battery lifetime are maximized when all the charge units inside the battery are consumed.


Wireless communications Battery modeling Recovery effect Markov decision process Dynamic programming Reinforcement learning 



  1. 1.
    Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.CrossRefGoogle Scholar
  2. 2.
    Goldsmith, A. (2005). Wireless communications (1st ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  3. 3.
    Estrin, D., Girod, L., Pottie, G., & Srivastava, M. (2001). Instrumenting the world with wireless sensor networks. In Proceedings of IEEE international conference on acoustics, speech and signal processing (ICASSP 2001), Salt Lake City, Utah, USA (Vol. 4, pp. 2033–2036).Google Scholar
  4. 4.
    Bennis, I., Zytoune, O., Aboutajdine, D., & Fouchal, H. (2013). Low energy geographical routing protocol for wireless multimedia sensor networks. In 9th international wireless communications and mobile computing conference (IWCMC), 2013. IEEE (pp. 585–589).Google Scholar
  5. 5.
    Dbibih, I., Zytoune, O., & Aboutajdine, D. (2014). On/off markov model based energy-delay aware mac protocol for wireless sensor network. Wireless Personal Communications, 78(2), 1143–1155.CrossRefGoogle Scholar
  6. 6.
    Zytoune, O., & Aboutajdine, D. (2016). Energy usage analysis of digital modulations in wireless sensor networks with realistic battery model. Wireless Networks, 22(8), 2713–2725.CrossRefGoogle Scholar
  7. 7.
    Sharma, M. K., & Murthy, C. R. (2017). On the design of dual energy harvesting communication links with retransmission. IEEE Transactions on Wireless Communications, 16, 4079–4093.CrossRefGoogle Scholar
  8. 8.
    Vullers, R. J., Van Schaijk, R., Visser, H. J., Penders, J., & Van Hoof, C. (2010). Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Magazine, 2(2), 29–38.CrossRefGoogle Scholar
  9. 9.
    Assaouy, M., Zytoune, O., & Aboutajdine, D. (2017). DP and RL approach optimization for embedded system communications with energy harvesting, I4CS 2017, CCIS 717 (pp. 167–182).Google Scholar
  10. 10.
    Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  11. 11.
    Kaelbling, L. Pack, Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237–285.CrossRefGoogle Scholar
  12. 12.
    Chiasserini, C. F., & Rao, R. R. (1999). Pulsed battery discharge in communication devices. In Proceedings MobiCom, Seattle, WA.Google Scholar
  13. 13.
    Chau, C.-K., Qin, F., Sayed, S., Wahab, M. H., & Yang, Y. (2010). Harnessing battery recovery effect in wireless sensor networks: Experiments and analysis. IEEE Journal on Selected Areas in Communications, 28(7), 1222–1232.CrossRefGoogle Scholar
  14. 14.
    He, L., Meng, G., Gu, Y., Liu, C., Sun, J., Zhu, T., et al. (2017). Battery-aware mobile data service. IEEE Transactions on Mobile Computing, 16, 1544–1558.CrossRefGoogle Scholar
  15. 15.
    Chiasserini, C. F., & Rao, R. R. (2001). Improving battery performance by using traffic shaping techniques. IEEE Journal on Selected Areas in Communications, 19(7), 1385–1394.CrossRefGoogle Scholar
  16. 16.
    Jongerden, M. R., & Haverkort, B. R. (2009). Which battery model to use? IET Software, 3(6), 445–457.CrossRefGoogle Scholar
  17. 17.
    Chiasserini, C. F., & Rao, R. R. (1999). A model for battery pulsed discharge with recovery effect. In Wireless communications and networking conference (pp. 636–639).Google Scholar
  18. 18.
    Papoulis, A. (1965). Probability, random variables, and stochastic processes. New York.Google Scholar
  19. 19.
    Mansour, Y., & Singh, S. (1999). On the complexity of policy iteration. In Proceedings of the 15th international conference on uncertainty in AI, Stockholm, SE (pp. 401–408).Google Scholar
  20. 20.
    IEEE 802.15.4e Draft Standard: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs), IEEE Standards, March 2010.Google Scholar
  21. 21.
    Galindo-Serrano, A., Giupponi, L., & Dohler, M. (2010). Cognition and docition in OFDMA-based femtocell networks. In IEEE Globecomm, Miami, Florida, USA (pp. 6–10).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LRIT - CNRST URAC 29, Rabat IT CenterMohammed V UniversityRabatMorocco
  2. 2.System Engineering Lab. (LGS)Ibn Tofail UniversityKenitraMorocco

Personalised recommendations