Advertisement

Wireless Personal Communications

, Volume 110, Issue 2, pp 999–1020 | Cite as

Modified Spatial Modulation and Low Complexity Signal Vector Based Minimum Mean Square Error Detection for MIMO Systems under Spatially Correlated Channels

  • Gaurav Jaiswal
  • Vishnu Vardhan Gudla
  • Vinoth Babu Kumaravelu
  • G. Ramachandra Reddy
  • Arthi MurugadassEmail author
Article
  • 17 Downloads

Abstract

Spatial Modulation (SM) is an innovative digital modulation scheme, which is expected to be a competitive candidate for next generation networks. All the variants of SM exhibit poor performance under spatial correlation and line of sight (LOS) Rician channel conditions. To combat the adverse effects of spatial correlation, a new variant of SM designated as modified spatial modulation (MSM) is proposed for 8 × 8 multiple input multiple output configuration. MSM uses a unique and dynamic mapping, which activates either one antenna or two antennas at the transmitter. Optimum maximum likelihood (ML) detection at the receiver though give accurate results but leads to high computational complexity as it performs extensive search of all possible antennas and symbols. In order to reduce the computational complexity, signal vector based minimum mean square error (SVMMSE) detection scheme is employed for MSM scheme. Estimation of antenna indices and transmitted symbols is done for both single antenna active and double antenna active scenarios. Performance of SVMMSE detection scheme is also analyzed under spatial correlation and LOS Rician channel conditions. The promising performance of SVMMSE under spatially uncorrelated Rayleigh, Spatial correlation and LOS Rician channel conditions with low computational complexity justifies the suitability of the proposed scheme for 5G based compact battery driven wireless devices.

Keywords

Modified spatial modulation (MSM) Multiple input multiple output (MIMO) Optimum maximum likelihood (ML) detection Signal vector based minimum mean square error detection (SVMMSE) Spatial modulation (SM) Spatial correlation 

Notes

References

  1. 1.
    Agiwal, M., Saxena, N., & Roy, A. (2018). Ten commandments of emerging 5G networks. Wireless Personal Communications,98(3), 2591–2621.CrossRefGoogle Scholar
  2. 2.
    Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications,32(6), 1065–1082.CrossRefGoogle Scholar
  3. 3.
    Rappaport, T. S., Roh, W., & Cheun, K. (2014). Wireless engineers long considered high frequencies worthless for cellular systems: They couldn’t be more wrong. IEEE Spectrum,51(9), 34–58.CrossRefGoogle Scholar
  4. 4.
    Akyildiz, I. F., Nie, S., Lin, S. C., & Chandrasekaran, M. (2016). 5G roadmap: 10 key enabling technologies. Computer Networks,106, 17–48.CrossRefGoogle Scholar
  5. 5.
    Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. Physical Communication,18, 64–84.CrossRefGoogle Scholar
  6. 6.
    Ericsson, L. (2011). More than 50 billion connected devices. White Paper,14, 124.Google Scholar
  7. 7.
    Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications,11(9), 3590–3600.CrossRefGoogle Scholar
  8. 8.
    Prasad, R. (2014). 5G: 2020 and beyond. River Publishers series in communication. Singapore: River Publishers.Google Scholar
  9. 9.
    Agiwal, M., Saxena, N., & Roy, A. (2018). Mobile assisted directional paging for 5G communications. Transactions on Emerging Telecommunications Technologies,29(2), e3270.CrossRefGoogle Scholar
  10. 10.
    DoCoMo, N. T. T. (2016). New SID proposal: Study on new radio access technology. 3GPP RP, 160671.Google Scholar
  11. 11.
    Basar, E., Wen, M., Mesleh, R., Di Renzo, M., Xiao, Y., & Haas, H. (2017). Index modulation techniques for next-generation wireless networks. IEEE Access,5, 16693–16746.CrossRefGoogle Scholar
  12. 12.
    Mesleh, R. Y. (2007). Spatial modulation: A spatial multiplexing technique for efficient wireless data transmission (Doctoral dissertation, Jacobs University, Bremen).Google Scholar
  13. 13.
    Simha, G. G., Koila, S., Neha, N., Raghavendra, M. A. N. S., & Sripati, U. (2017). Redesigned spatial modulation for spatially correlated fading channels. Wireless Personal Communications,97(4), 5003–5030.CrossRefGoogle Scholar
  14. 14.
    Naidu, S., Pillay, N., & Xu, H. (2018). Transmit antenna selection schemes for quadrature spatial modulation. Wireless Personal Communications,99(1), 299–317.CrossRefGoogle Scholar
  15. 15.
    Jeganathan, J., Ghrayeb, A., & Szczecinski, L. (2008). Spatial modulation: Optimal detection and performance analysis. IEEE Communications Letters,12(8), 545–547.CrossRefGoogle Scholar
  16. 16.
    Serafimovski, N., Di Renzo, M., Sinanovic, S., Mesleh, R. Y., & Haas, H. (2010). Fractional bit encoded spatial modulation (FBE-SM). IEEE Communications Letters,14(5), 429–431.CrossRefGoogle Scholar
  17. 17.
    Younis, A., Serafimovski, N., Mesleh, R., & Haas, H. (2010). Generalised spatial modulation. In Proceedings of 44th Asilomar conference on signals, systems and computers (ASILOMAR), (pp. 1498-1502).Google Scholar
  18. 18.
    Mesleh, R., Ikki, S. S., & Aggoune, H. M. (2015). Quadrature spatial modulation. IEEE Transactions on Vehicular Technology,64(6), 2738–2742.CrossRefGoogle Scholar
  19. 19.
    Mesleh, R., Ikki, S. S., & Aggoune, H. M. (2017). Quadrature spatial modulation–performance analysis and impact of imperfect channel knowledge. Transactions on Emerging Telecommunications Technologies,28(1), e2905.CrossRefGoogle Scholar
  20. 20.
    Younis, A. (2014). Spatial modulation: Theory to practice. Edinburgh: University of Edinburgh.Google Scholar
  21. 21.
    Luna-Rivera, J. M., & Gonzalez-Perez, M. G. (2012). An improved spatial modulation scheme for MIMO channels. In Proceedings of 6th European conference on antennas and propagation (EUCAP) (pp. 1–5).Google Scholar
  22. 22.
    Cheng, C. C., Sari, H., Sezginer, S., & Su, Y. T. (2014). Enhanced spatial modulation with multiple constellations. In Proceedings of IEEE international black sea conference on communications and networking (BlackSeaCom) (pp. 1–5).Google Scholar
  23. 23.
    Cheng, C. C., Sari, H., Sezginer, S., & Su, Y. T. (2015). Enhanced spatial modulation with multiple signal constellations. IEEE Transactions on Communications,63(6), 2237–2248.CrossRefGoogle Scholar
  24. 24.
    Mesleh, R., Hiari, O., & Younis, A. (2018). Generalized space modulation techniques: Hardware design and considerations. Physical Communication,26, 87–95.CrossRefGoogle Scholar
  25. 25.
    Mesleh, R., Di Renzo, M., Haas, H., & Grant, P. M. (2010). Trellis coded spatial modulation. IEEE Transactions on Wireless Communications,9(7), 2349–2361.CrossRefGoogle Scholar
  26. 26.
    Xiao, Y., Yang, Z., Dan, L., Yang, P., Yin, L., & Xiang, W. (2014). Low-complexity signal detection for generalized spatial modulation. IEEE Communications Letters,18(3), 403–406.CrossRefGoogle Scholar
  27. 27.
    Younis, A., Di Renzo, M., Mesleh, R., & Haas, H. (2011). Sphere decoding for spatial modulation. In Proceedings of 2011 IEEE international conference on communications (ICC) (pp. 1–6).Google Scholar
  28. 28.
    Baraniuk, R. G. (2007). Compressive sensing (lecture notes). IEEE Signal Processing Magazine,24(4), 118–121.CrossRefGoogle Scholar
  29. 29.
    Glover, F., & Laguna, M. (2013) Tabu search. In Handbook of combinatorial optimization (pp. 3261–3362). Springer New York.Google Scholar
  30. 30.
    Del Moral, P., Doucet, A., & Jasra, A. (2012). An adaptive sequential Monte Carlo method for approximate Bayesian computation. Statistics and Computing,22(5), 1009–1020.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wang, J., Jia, S., & Song, J. (2012). Signal vector based detection scheme for spatial modulation. IEEE Communications Letters,16(1), 19–21.CrossRefGoogle Scholar
  32. 32.
    Zheng, J. (2012). Signal vector based list detection for spatial modulation. IEEE Wireless Communications Letters,1(4), 265–267.CrossRefGoogle Scholar
  33. 33.
    Zhang, W., & Yin, Q. (2014). Adaptive signal vector based detection for spatial modulation. IEEE Communications Letters,18(11), 2059–2062.CrossRefGoogle Scholar
  34. 34.
    Younis, A., Sinanovic, S., Di Renzo, M., Mesleh, R., & Haas, H. (2013). Generalised sphere decoding for spatial modulation. IEEE Transactions on Communications,61(7), 2805–2815.CrossRefGoogle Scholar
  35. 35.
    Serafimovski, N., Younis, A., Mesleh, R., Chambers, P., Di Renzo, M., Wang, C. X., et al. (2013). Practical implementation of spatial modulation. IEEE Transactions on Vehicular Technology,62(9), 4511–4523.CrossRefGoogle Scholar
  36. 36.
    Li, J., Jiang, X., Yan, Y., Yu, W., Song, S., & Lee, M. H. (2017). Low complexity detection for quadrature spatial modulation systems. Wireless Personal Communications,95(4), 4171–4183.CrossRefGoogle Scholar
  37. 37.
    Xiangbin, Y., Qing, P., Yang, L., Yaping, H., & Tao, L. (2018). Adaptive spatial modulation and thresholds optimization for MIMO systems in correlated Rayleigh channels. International Journal of Electronics and Communications,89, 167–173.CrossRefGoogle Scholar
  38. 38.
    Quitin, F., Oestges, C., Horlin, F., & De Doncker, P. (2010). A polarized clustered channel model for indoor multiantenna systems at 3.6 GHz. IEEE Transactions on Vehicular Technology,59(8), 3685–3693.CrossRefGoogle Scholar
  39. 39.
    Oestges, C. (2006). Validity of the Kronecker model for MIMO correlated channels. In Proceedings of 63rd IEEE vehicular technology conference (VTC), 6 (pp. 2818–2822).Google Scholar
  40. 40.
    Jagannatham, A. K. (2015). Principles of modern wireless communication systems. New York: McGraw-Hill Education.Google Scholar
  41. 41.
    Liu, X., & Wesel, R. D. (1998). Profile optimal 8-QAM and 32-QAM constellations. In Thirty-sixth annual allerton conference on communications, control, and computing.Google Scholar
  42. 42.
    Wang, F., Xiong, Y., & Yang, X. (2007). Approximate ML detection based on MMSE for MIMO systems. Progress in Electromagnetics Research Symposium (PIERS) Online,4(3), 475–480.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.SOC/Hardware System Performance Engineer I, Qualcomm India Pvt. Ltd.ChennaiIndia
  2. 2.Department of Communication Engineering, School of Electronics EngineeringVellore Institute of TechnologyVelloreIndia
  3. 3.Department of Computer Science and EngineeringSreenivasa Institute of Technology and Management StudiesChittoorIndia

Personalised recommendations