Advertisement

Advances in Smart Antenna Systems for Wireless Communication

  • 31 Accesses

Abstract

Wireless communication is one of the fastest growing fields of communication industry. Cellular phones have shown the drastic exponential growth from the last decade and this growth has reached about one billion mobile phone users worldwide. Certainly, mobile phones have become one of the most importants components of daily life and a critical business tool in all countries. Huge gap between a vision for future wireless communication systems and the current system’s performance represents that massive research work has to be carried out to make future communication system vision a reality. In this paper, all most all the types of beamforming and direction of arrival schemes for wireless communications have been presented. This paper also presents the comprehensive study of smart antenna systems, its advancement in recent years and futuristic scope.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Van Atta, L. Electromagnetic reflection. U.S. Patent 2908002, Oct. 6, 1959.

  2. 2.

    Gross, F. B. (2005). Smart antennas for wireless communications. Tata McGraw-Hill.

  3. 3.

    de Fuentesa, J. M., Manzanoa, L. G., Tablasa, A. I. G., & Blascoa, J. (2014). Security models in vehicular ad-hoc networks: A survey. IETE Technical Review,31(1), 47–64.

  4. 4.

    Howells, P. (1976). Explorations in fixed and adaptive resolution at GE and SURC. IEEE Transactions on Antenna and Propagation, Special Issue on Adaptive Antennas,AP-24(5), 575–584.

  5. 5.

    Applebaum, S. (1966). Adaptive Arrays. Syracuse University Research Corporation, Rep. SPL TR66-1, August 1966.

  6. 6.

    Applebaum, S. (1976). Adaptive arrays. IEEE Transactions on Antenna and Propagation,AP-(5), 585–598.

  7. 7.

    Widrow, B., & Hoff, M. (1960). Adaptive switch circuits, IREWescom, Convention Record, Part 4, pp. 96–104.

  8. 8.

    Widrow, B., Mantey, P., & Griffiths, L., et al. (1967). Adaptive antenna systems. In Proceedings of the IEEE (Vol. 55), Dec.

  9. 9.

    Dakulagi, V., & Bakhar, M. (2019). Smart antenna system for DOA estimation using single snapshot. Springer Wireless Personal Communications.,107(1), 81–93. https://doi.org/10.1007/s11277-019-06241-0.

  10. 10.

    Capon, J. (1969). High-resolution frequency-wave number spectrum analysis. Proceedings of IEEE,57, 1408–1418.

  11. 11.

    Sanudin, Noordin, N. H., El-Rayis, A. O., Haridas, N., Erdogan, A. T., & Arslan, T. (2011). Capon-like DOA estimation algorithm for directional antenna arrays. In IEEE 2011 Loughborough Antennas & Propagation Conference (pp. 1–4).

  12. 12.

    Li, J., Stoica, P., & Wang, Z. (2003). On robust Capon beamforming and diagonal loading. IEEE Transactions on Signal Processing,51, 1702–1715.

  13. 13.

    Li, J., Stoica, P., & Wang, Z. (2004). Doubly constrained robust capon beamformer. IEEE Transactions on Signal Processing,52, 2407–2423.

  14. 14.

    Lacoss, R. T. (1971). Data adaptive spectral analysis method. Geophysics,36, 661–675.

  15. 15.

    Bartlett, M. S. (1956). An introduction to stochastic process. New York: Cambridge University Press.

  16. 16.

    Pezeshki, A., Van Veen, B. D., Scharf, L. L., Cox, H., & Lundberg, M. (2008). Eigenvalue beamforming using a multi-rank MVDR beamformer and subspace selection. IEEE Transactions on Signal Processing,56(5), 1954–1967.

  17. 17.

    Balasem, S. S., Tiong, S. K., & Koh, S. P. (2012). Beamforming algorithms technique by using MVDR and LCMV. World Applied Programming,2(5), 315–324.

  18. 18.

    Wang, Y., Huang, L., & Shi, Y. (2015). Robust widely linear adaptive MVDR beamformer based on interference-plus-noise covariance matrix and steering vector estimation. In Proceedings of of IEEE China Summit and international conference on signal and information processing (ChinaSIP 2015), July 2015, Chengdu, China.

  19. 19.

    Xu, J., Liao, G., Zhu, S., & Huang, L. (2015). Response vector constrained robust LCMV beamforming via a semidefinite programming relaxation. IEEE Transactions on Signal Processing,63(21), 5720–5732.

  20. 20.

    Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation,34(3), 276–280.

  21. 21.

    Swindlehurst, A. L., & Kailath, T. (1992). A performance analysis of subspace-based methods in the presence of model errors, part I: The MUSIC algorithm. IEEE Transactions on Signal Processing,40, 1758–1774.

  22. 22.

    Friedlander, B., & Weiss, A. J. (1994). Effects of model errors on waveform estimation using the MUSIC algorithm. IEEE Transactions on Signal Processing,42, 147–155.

  23. 23.

    Ying, Z., & Ng, B. P. (2010). MUSIC-like DOA estimation without estimating the number of sources. IEEE Transactions on Signal Processing,58, 1668–1676.

  24. 24.

    Bo, L. I. (2011). Estimation for signal’s DOA by MUSIC algorithm. Journal of Computational Information Systems,7(15), 5461–5468.

  25. 25.

    Park, H. R., & Kim, Y. S. (1993). A solution to the narrow-band coherency problem in multiple source location. IEEE Transactions on Signal Processing,41, 473–476.

  26. 26.

    Zeng, W. J., So, H. C., & Huang, L. (2013). lp-MUSIC: Robust direction-of-arrival estimator for impulsive noise environments. IEEE Transactions on Signal Processing, 5(99), 4296–4308.

  27. 27.

    Becker, H., Chevalierand, P., & Haardt, M. (2014). High resolution direction finding from rectangular higher order cumulant matrices: The rectangular 2Q-MUSIC Algorithms. In Proceedings in international conference on acoustic, signal processing (pp. 2261–2265).

  28. 28.

    Dakulagi, V., Noubade, A., Agasgere, A., Doddi, P., & Fatima, K. (2019). Modified adaptive beamforming algorithms for 4G-LTE smart-phones. Springer Advances in Intelligent Systems and Computing,898, 561–568.

  29. 29.

    Qian, C., Huang, L., & So, H. C. (2014). Improved unitary Root-MUSIC for DOA estimation based on pseudo-noise resampling. IEEE Signal Processing Letters,21(2), 140–144.

  30. 30.

    Qian, C., Huang, L., Xiao, Y., & So, H. C. (2015). Two-step reliability test based unitary root-MUSIC for direction-of-arrival estimation. Elsevier Digital Signal Processing,44, 68–75.

  31. 31.

    Buckley, K. M., & Xu, X. L. (1990). Spatial spectrum estimation in a location sector. IEEE Transactions on Acoustics, Speech, and Signal Processing,ASSP-38, 1842–1852.

  32. 32.

    Roy, R., & Kailath, T. (1989). ESPRIT—Estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing,ASSP-37, 984–995.

  33. 33.

    Huang, L., Wu, S., Feng, D., & Zhang, L. (2004). Low complexity method for signal subspace fitting. IEE Electronics Letters,40(14), 847–848.

  34. 34.

    Huang, L., Wu, S., & Zhang, L. (2005). Low-complexity ESPRIT method for direction finding. In Proceedings of IEEE international acoustics, speech, and signal processing, 2005 (ICASSP ‘05), Pennsylvania, PA, USA, March 18–23, 2005.

  35. 35.

    Huang, L., Feng, D., Wu, S., & Zhang, L. (2005). Computationally efficient method of signal subspace fitting for direction-of-arrival estimation. IEICE Transactions on Communications,88, 3408–3415.

  36. 36.

    Qian, C., Huang, L., & So, H. C. (2014). Computationally efficient ESPRIT algorithm for direction-of-arrival estimation based on Nyström method. Signal Processing,94, 74–80.

  37. 37.

    Choi, S., Sarkar, T. K., & Lee, S. S. (1993). Design of two dimensional Tseng window and its application to antenna array for the detection of AM signal in the presence of strong jammers in mobile communications. Signal Processing,34, 297–310.

  38. 38.

    Chiba, I., Takahashi, T., & Karasawa, Y. (1994). Transmitting null beam forming with beam space adaptive array antennas. In Proceedings of IEEE 44th vehicular technology conference, Stockholm, Sweden (pp. 1498–1502).

  39. 39.

    Friedlander, B., & Porat, B. (1989). Performance analysis of a nullsteering algorithm based on direction-of-arrival estimation. IEEE Transaction on Acoustics, Speech and Signal Processing,37, 461–466.

  40. 40.

    Dakulagi, V., Bakhar, M., & Vani, R. M. (2016). Robust blind beam formers for smart antenna system using window techniques. Procedia Computer Science,93, 713–720.

  41. 41.

    Winters, J. H. (1984). Optimum combining in digital mobile radio with cochannel interference. IEEE Journal on Selected Areas in Communications,SAC-2, 528–539.

  42. 42.

    Naguib, A. F., & Paulraj, A. (1994). Performance of CDMA cellular networks with base-station antenna arrays. In Proceedings of IEEE international Zurich seminar on communications (pp. 87–100).

  43. 43.

    Widrow, B., Mantey, P. E., Griffiths, L. J., & Goode, B. B. (1967). Adaptive antenna systems. Proceedings of the IEEE,55, 2143–2158.

  44. 44.

    Choi, S., & Sarkar, T. K. (1992). Adaptive antenna array utilizing the conjugate gradient method for multipath mobile communication. Signal Processing,29, 319–333.

  45. 45.

    Anderson, S., Millnert, M., Viberg, M., & Wahlberg, B. (1991). An adaptive array for mobile communication systems. IEEE Transactions on Vehicular Technology,40, 230–236.

  46. 46.

    Boonpoonga, A., Sirisuk, P., & Krairiksh, M. (2013). Efficient parallel architecture for implementation of the CMA adaptive antenna. IETE Technical Review,30, 303–312.

  47. 47.

    Tanaka, T., Miura, R., Chiba, I., & Karasawa, Y. (1995). An ASIC implementation scheme to realize a beam space CMA adaptive array antenna. IEICE Transactions on Communications,E78-B, 1467–1473.

  48. 48.

    Godara, L. C. (1987). A robust adaptive array processor. IEEE Transactions on Circuits and Systems,CAS-34, 721–730.

  49. 49.

    Winters, J. H., Salz, J., & Gitlin, R. D. (1994). The impact of antenna diversity on the capacity of wireless communication systems. IEEE Transactions on Communications,42, 1740–1751.

  50. 50.

    Despins, C. L. B., Falconer, D. D., & Mahmoud, S. A. (1992). Compound strategies of coding, equalization and space diversity for wideband TDMA indoor wireless channels. IEEE Transactions on Vehicular Technology,41, 369–379.

  51. 51.

    Er, M. H., & Cantoni, A. (1986). An unconstrained partitioned realization for derivative constrained broadband antenna array processors. IEEE Transactions on Acoustics, Speech, and Signal Processing,ASSP-34, 1376–1379.

  52. 52.

    Shynk, J. J., & Gooch, R. P. (1985). Frequency-domain adaptive pole-zero filtering. Proceedings of IEEE,73, 1526–1528.

  53. 53.

    Youn, W. S., & Un, C. K. (1990). Eigenstructure method for robust array processing. Electronics Letters,26, 678–680.

  54. 54.

    Dakulagi, V., Bakhar, M., & Vani, R. M. (2016). Smart antennas for interference rejection in mobile communications. Journal of Mobile Applications and Technologies,2(4), 11–18.

  55. 55.

    Nishimori, K., Kikuma, N., & Inagaki, N. (1995). The differencial CMA adaptive array antenna using an eigen-beamspace system. IEICE Transactions on Communications,E78-B, 1480–1488.

  56. 56.

    Friedlander, B. (1988). A signal subspace method for adaptive interference cancellation. IEEE Transactions on Acoustics, Speech, and Signal Processing,36, 1835–1845.

  57. 57.

    Pridham, R. G., & Mucci, R. A. (1978). A novel approach to digital beamforming. The Journal of the Acoustical Society of America,63, 425–434.

  58. 58.

    Sylva, P. D., Menard, P., & Roy, D. (1986). A reconfigurable realtime interpolation beamformer. IEEE Journal of Oceanic Engineering,OE-11, 123–126.

  59. 59.

    Pridham, R. G., & Mucci, R. A. (1979). Digital interpolation beamforming for low-pass and bandpass signals. Proceedings of IEEE,67, 904–919.

  60. 60.

    Maranda, B. (1989). Efficient digital beamforming in the frequency domain. The Journal of the Acoustical Society of America,86, 1813–1819.

  61. 61.

    Fan, H., El-Masry, E. I., & Jenkins, W. K. (1984). Resolution enhancement of digital beamforming. IEEE Transactions on Acoustics, Speech, and Signal Processing,32, 1041–1052.

  62. 62.

    Papoulis, A. (1975). A new algorithm in spectral analysis and bandlimited extrapolation. IEEE Transactions on Circuits and Systems,CAS-22, 735–742.

  63. 63.

    Gebauer, T., & Gockler, H. G. (1995). Channel-individual adaptive beamforming for mobile satellite communications. IEEE Journal on Selected Areas in Communications,13, 439–448.

  64. 64.

    Curtis, T. (1980). Digital beamforming for sonar systems. In Proceedings of IEE Pt. F (Vol. 127, pp. 257–265).

  65. 65.

    Barton, P. (1980). Digital beamforming for radar. In IEE Proceedings on Pt. F (Vol. 127, pp. 266–277).

  66. 66.

    Skolnik, M. (2001). Introduction to radar systems (3rd ed.). New York: McGraw-Hill.

  67. 67.

    Skolnik, M. (2002). System aspects of digital beam forming ubiquitous radar. Naval Research Lab, Report No. NRL/MR/5007—02- June 28, 2002.

  68. 68.

    Dakulagi, V., & Bakhar, M. (2017). Smart antennas for cognitive radio networks. Journal on Communication Engineering and Systems,6(1), 22–27.

  69. 69.

    Ko, C. C. (1993). A fast adaptive null-steering algorithm based on output power measurements. IEEE Transactions on Aerospace and Electronic Systems,29, 717–725.

  70. 70.

    Ko, C. C., Balabshaskar, G., & Bachl, R. (1993). Unbiased source estimation with an adaptive null steering algorithm. Signal Processing,31, 283–300.

  71. 71.

    Dentino, M., McCool, J., & Widrow, B. (1978). Adaptive filtering in frequency domain. Proceedings of IEEE,66, 1658–1659.

  72. 72.

    Dakulagi, V., Bakhar, M., & Vani, R. M. (2015). Subspace based direction of arrival estimation using no snapshot criteria for mobile communications. The IUP Journal of Telecommunications VI,I(3), 29–37.

  73. 73.

    Chen, R. Y., & Wang, C. L. (1990). On the optimum step size for the adaptive sign and LMS algorithms. IEEE Transactions on Circuits and Systems,37, 836–840.

  74. 74.

    Winters, J. H. (1987). Optimum combining for indoor radio systems with multiple users. IEEE Transactions on Communications,COM-35, 1222–1230.

  75. 75.

    Mathews, V. J., & Cho, S. H. (1987). Improved convergence analysis of stochastic gradient adaptive filters using the sign algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing,ASSP-35, 450–454.

  76. 76.

    Dakulagi, V., & Bakhar, M. (2017). Smart antenna system for DOA estimation using 2D-ULA. Indian Journal of Scientific Research, 13(1), 241–244. ISSN: 0976-2876.

  77. 77.

    Slock, D. T. M. (1993). On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE Transactions on Signal Processing,41, 2811–2825.

  78. 78.

    Rupp, M. (1993). The behavior of LMS and NLMS algorithms in the presence of spherically invariant processes. IEEE Transactions on Signal Processing,41, 1149–1160.

  79. 79.

    Barrett, M., & Arnott, R. (1994). Adaptive antennas for mobile communications. Electronics & Communication Engineering Journal,6, 203–214.

  80. 80.

    So, H. C., & Chan, Y. T. (2003). Analysis of an LMS algorithm for unbiased impulse response estimation. IEEE Transactions on Signal Processing,51(7), 1–6.

  81. 81.

    Srar, A., & Kah-Seng, C. (2009). Adaptive RLMS algorithm for antenna array beamforming. In Proceedings of IEEE Region 10 conference TENCON (pp. 1–6).

  82. 82.

    Rana, M. M. (2011). Performance comparison of LMS and RLS channel estimation algorithms for 40 MIMO OFDM systems. In Proceedings of IEEE international conference on computer and information technology, December.

  83. 83.

    Ali, R. L. (2012). A robust least mean square algorithm for adaptive array signal processing. Wireless Personal Communications, 68(4), 1449–1461.

  84. 84.

    Motiur Rahaman, D. M., Hossain, M. M., & Rana, M. M. (2013). Least mean square (LMS) for smart antenna. Universal Journal of Communications and Network,1(1), 16–21.

  85. 85.

    Shubair, R. M., & Hakam, A. (2013). Adaptive beamforming using variable step-size LMS algorithm with novel ULA array configuration. In Proceedings of IEEE ICCT (pp. 650–654).

  86. 86.

    Dungriyal, K., Anand, S., & Sriram Kumar, D. (2014). Performance of MIR-LMS algorithm for adaptive beam forming in smart antenna. In Proceedings of IRF international conference, Chennai, India, 20th Apr 2014.

  87. 87.

    Taheri, O., & Vorobyov, S. A. (2014). Reweighted l1-norm penalized LMS for sparse channel estimation and its analysis. Elsevier Signal Processing,104, 70–79.

  88. 88.

    Shi, Y., Huang, L., Qian, C., & So, H. C. (2015). Shrinkage linear and widely-linear complex-valued least mean squares algorithms for adaptive beamforming. IEEE Transactions on Signal Processing,61(1), 119–131.

  89. 89.

    Litva, J., & Lo, T. K.-Y. (1996). Digital beamforming in wireless communications. Norwood: Artech House.

  90. 90.

    Diouris, J. F., Feuvrie, B., & Saillard, J. (1993). Adaptive multisensory receiver for mobile communications. Annals of Telecommunications,48, 35–46.

  91. 91.

    Lindskog, E. (1995). Making SMI-beamforming insensitive to the sampling timing for GSM signals. In Proceedings of IEEE international symposium on personal, indoor and mobile radio communications, Toronto, Canada (pp. 664–668).

  92. 92.

    Vaughan, R. G. (1988). On optimum combining at the mobile. IEEE Transactions on Vehicular Technology,37, 181–188.

  93. 93.

    Dakulagi, V., & Bakhar, M. (2017). Efficient blind beamforming algorithms for phased array and MIMO RADAR. IETE Journal of Research. https://doi.org/10.1080/03772063.2017.1351319.

  94. 94.

    Slock, D. T. M., & Kailath, T. (1991). Numerically stable fast transversal filters for recursive least squares adaptive filtering. IEEE Transactions on Signal Processing,39, 92–114.

  95. 95.

    Gardner, W. A., & Brown, W. A., III. (1987). A new algorithm for adaptive arrays. IEEE Transactions on Acoustics, Speech, and Signal Processing,ASSP-35, 1314–1319.

  96. 96.

    Dakulagi, V. (2018). Compact multiband planar inverted L patch antenna array for smart mobile phones. Journal on Electronics Engineering,8(3), 39–42. https://doi.org/10.26634/jele.8.3.14415.

  97. 97.

    Wang, Y., & Cruz, J. R. (1994). Adaptive antenna arrays for the reverse link of CDMA cellular communication systems. Electronics Letters,30, 1017–1018.

  98. 98.

    Godard, D. N. (1980). Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Transactions on Communications,Com-28(11), 1867–1875.

  99. 99.

    Ohgane, T. (1991). Characteristics of CMA adaptive array for selective fading compensation in digital land mobile radio communications. Electronics Communications in Japan,74, 43–53.

  100. 100.

    Ohgane, T., Matsuzawa, N., Shimura, T., Mizuno, M., & Sasaoka, H. (1993). BER performance of CMA adaptive array for high-speed GMSK mobile communication—A description of measurements in central Tokyo. IEEE Transactions on Vehicular Technology,42, 484–490.

  101. 101.

    Ohgane, T., Shimura, T., Matsuzawa, N., & Sasaoka, H. (1993). An implementation of a CMA adaptive array for high speed GMSK transmission in mobile communications. IEEE Transactions on Vehicular Technology,42, 282–288.

  102. 102.

    Parra, I., Xu, G., & Liu, H. (1995) Least squares projective constant modulus approach. In Proceedings of IEEE international symposium on personal, indoor and mobile radio communications, Toronto, Canada, 1995 (pp. 673–676).

  103. 103.

    Agee, B. (1986). The least-squares CMA: A new technique for rapid correction of constant modulus signals. In Proceedings of IEEE international conference on ICASSP’86 (Vol. 11, pp. 953–956), April 1986.

  104. 104.

    Dakulagi, V. (2019). Adaptive beamforming algorithms using 2D-novel ULA for wireless communications. Springer Nature Applied Sciences,1(9), 1001. https://doi.org/10.1007/s42452-019-1009-z.

  105. 105.

    Rong, Z. (1996). Simulation of adaptive array algorithms for CDMA systems. Master’s Thesis MPRG-TR-96-31, Mobile & Portable Radio Research Group, Virginia Tech, Blacksburg, VA, Sept. 1996.

  106. 106.

    Stoica, P., & Moses, R. (1997). Introduction to spectral analysis. New York: Prentice Hall.

  107. 107.

    Hestenes, M., & Stiefel, E. (1952). Method of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards,49, 409–436.

  108. 108.

    Dakulagi, V., Noubade, A., Agasgere, A., Doddi, P., & Fatima, K. (2019). Modified adaptive beamforming algorithms for 4G-LTE smart-phones. In Soft computing and signal processing. Advances in intelligent systems and computing (Vol. 898, pp. 561–568). Springer.

  109. 109.

    Choi, S., & Sarkar, T. (1981). Adaptive Antenna Array Utilizing the Conjugate Gradient Method for Multipath Mobile Communication, Signal Processing, Vol. 29, pp. 319–333, 1992. Transactions on Antennas Propagation, AP-29, 847–856.

  110. 110.

    Choi, S. (1991). Application of the conjugate gradient method for optimum array processing (chapter 16) (Vol. V). Amsterdam: Elsevier.

  111. 111.

    Choi, S., & Kim, D. H. (1992). Adaptive antenna array utilizing the conjugate gradient method for compensation of multipath fading in a land mobile communication. In Proceedings of IEEE 42nd vehicular technology conference, Denver, CO (pp. 33–36).

  112. 112.

    Vorobyov, S. A. (2014). Array and statistical signal processing. Elsevier Academic Press Library in Signal Processing,3, 1–51.

  113. 113.

    Dakulagi, V., Bakhar, M., & Vani, R. M. (2014). Implementation and optimization of modified MUSIC algorithm for high resolution DOA estimation. In Proceedings of IEEE international microwave and RF conference (pp. 190–193), December 2014. https://doi.org/10.1109/imarc.2014.7038985.

  114. 114.

    Bakhar, M., Vani, R. M., & Hunagund, P. V. (2010). Performance analysis of MUSIC and LMS algorithms for smart antenna systems. International Journal of Electronics Engineering,2(2), 271–275.

  115. 115.

    Saucan, A.-A., Chonavel, T., Sintes, C., & Le Caillec, J.-M. (2016). CPHD-DOA tracking of multiple extended sonar targets in impulsive environments. IEEE Transactions on Signal Processing,64(5), 1147–1160.

  116. 116.

    Liu, Y., & Cuia, H. (2015). Antenna array signal direction of arrival estimation on digital signal processor (DSP). Procedia Computer Science,55, 782–791.

  117. 117.

    Dakulagi, V., & Bakhar, A. (2017). Novel LMS beamformer for adaptive antenna array. Elsevier Computer Science, 115, 94–100. https://doi.org/10.1016/j.procs.2017.09.081.

Download references

Author information

Correspondence to Veerendra Dakulagi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dakulagi, V., Bakhar, M. Advances in Smart Antenna Systems for Wireless Communication. Wireless Pers Commun 110, 931–957 (2020). https://doi.org/10.1007/s11277-019-06764-6

Download citation

Keywords

  • Array antenna
  • Beamforming
  • DOA
  • ESPRIT
  • Smart antenna
  • Wireless communication