Advertisement

Wireless Personal Communications

, Volume 110, Issue 2, pp 735–761 | Cite as

Meta-heuristic Algorithm Based Precoding in Massive MIMO

  • Saurabh Manilal Patel
  • Kiritkumar Ramanbhai BhattEmail author
Article
  • 41 Downloads

Abstract

In last few years there is escalating growth of teletraffic accompanied with higher power emission resulting in increased global carbon footprint. But as evolution of a technology should be in harmony with environment, controlling transmission energy at base station and mobile phones becomes mandatory. Therefore novel Beamforming technique or precoding technique is a desideratum at receiver as well as transmitter side. This technique searches for receivers and tracks optimal solution for enhancement of power efficiency, signal to interference noise ratio (SINR) and half power beam width. This paper proposes an integration of evolutionary algorithms and standard beamforming techniques such as least mean square (LMS) and recursive least square (RLS). To solve the global optimization problem, evolutionary algorithms such as particle swarm optimization (PSO), non-dominated sorting genetic algorithm, BAT and Firefly are used. The MATLAB simulation of the proposed fusion of LMS and RLS with evolutionary optimization algorithms has shown improvement in power and SINR which resulted in achieving less bit error rate. The results have shown reduction in mean square error (MSE) and improvement in cost function by 89%.

Keywords

Beamforming Fusion technique Non-dominated sorting genetic algorithm (NSGA-II) Particle swarm optimization (PSO) BAT algorithm Firefly algorithm (FA) Least mean square (LMS) Recursive least square (RLS) 

Notes

References

  1. 1.
    Dahlman, S., Parkvall, J. Sköld, & Beming, P. (2008). 3G evolution HSPA and LTE for mobile broadband. London: Academic Press.Google Scholar
  2. 2.
    Tse, D., & Viswanath, P. (2004). Fundamentals of wireless communications. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  3. 3.
    Thomas, J.-L., Wu, F., & Fink, M. (1996). Time reversal focusing applied to lithotripsy. Ultrasonic Imaging,18(2), 106–121.Google Scholar
  4. 4.
    Lerosey, J. R., Tourin, A., Derode, A., Montaldo, G., & Fink, M. (2004). Time reversal of electromagnetic waves. Physical Review Letters,92(19), 193904.Google Scholar
  5. 5.
    Derode, A., Tourin, A., & Fink, M. (2001). Random multiple scattering of ultrasound. II. Is time reversal a self-averaging process? Physical Review E,64, 6606.Google Scholar
  6. 6.
    Chambers, H., & Berryman, J. G. (2004). Time-reversal analysis for scatterer characterization. Physical Review Letters,92, 023902.Google Scholar
  7. 7.
    Micolau, G., Saillard, M., & Borderies, P. (2003). DORT method as applied to ultrawideband signals for detection of buried objects. IEEE Transactions on Geoscience and Remote Sensing,41, 1813.Google Scholar
  8. 8.
    Lo, T. K. Y. (1999). Maximum ratio transmission. IEEE Transactions on Communications,47(10), 1310.Google Scholar
  9. 9.
    Jalden, J., & Ottersten, B. (2005). On the complexity of sphere decoding in digital communications. IEEE Transactions on Signal Processing,53(4), 1474–1484.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Larsson, E. G. (2009). MIMO detection methods: how they work. IEEE Signal Processing Magazine,26(3), 91–95.Google Scholar
  11. 11.
    Tulino, M., & Verdu, S. (2004). Random matrix theory and wireless communications. Boston: Now Publishers.zbMATHGoogle Scholar
  12. 12.
    Rusek, F., Dniel Persson, B. K., Lau, E. G. Larsson, Marzetta, T. L., Edfors, O., & Tufvesson, F. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine,30(1), 40–60.Google Scholar
  13. 13.
    Marzetta, T. L. (2010). Non cooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications,9(11), 3590–3600.Google Scholar
  14. 14.
    Kapusuz, K. Y., & Kara, A. (2014). Determination of scattering center of multipath signals using geometric optics and Fresnel zone concepts. Engineering Science and Technology, An International Journal,17, 50–57.Google Scholar
  15. 15.
    Guan, Qiao, Chen, C., & Song, B. (2018). A study of designing circular polarization for leaky coaxial cable at 900 MHz. Progress in Electromagnetics Research Letters,76, 39–46.Google Scholar
  16. 16.
    El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. (2013). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications,13(3), 1499–1513.Google Scholar
  17. 17.
    El Ayach, O., Heath, R. W., Rajagopal, S., & Pi, Z. (2013). Multimode precoding in millimeter wave MIMO transmitters with multiple antenna sub arrays. In Proceedings of IEEE Global communications conference (GLOBECOM), Atlanta, GA, USA (pp. 3476–3480).Google Scholar
  18. 18.
    Han, S., Chih-Lin, I., Xu, Z., & Rowell, C. (2015). Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Communications Magazine,53(1), 186–194.Google Scholar
  19. 19.
    Ali, E., Ismail, M., Nordin, R., & Abdulah, N. F. (2017). Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research. Frontiers of Information Technology & Electronic Engineering,18(6), 753–772.Google Scholar
  20. 20.
    Khodier, M. M., & Christodoulou, C. G. (2005). Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. IEEE Transactions on Antennas and Propagation,53(8), 2674–2679.Google Scholar
  21. 21.
    Jin, N., & Rahmat-Samii, Y. (2007). Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations. IEEE Transactions on Antennas and Propagation,55(3), 556–567.Google Scholar
  22. 22.
    Saxena, P., & Kothari, A. (2016). Optimal pattern synthesis of linear antenna array using grey wolf optimization algorithm. International Journal of Antennas and Propagation,2016, 1205970.Google Scholar
  23. 23.
    Saxena, P., & Kothari, A. (2016). Ant lion optimization algorithm to control side lobe level and null depths in linear antenna arrays. AEU International Journal of Electronics and Communications,70(9), 1339–1349.Google Scholar
  24. 24.
    Subhashini, K., & Satapathy, J. (2017). Development of an enhanced ant lion optimization algorithm and its application in antenna array synthesis. Applied Soft Computing,59, 153–173.Google Scholar
  25. 25.
    Van Luyen, T., & Giang, T. V. B. (2017). Interference suppression of ULA antennas by phase-only control using bat algorithm. IEEE Antennas and Wireless Propagation Letters,16, 3038–3042.Google Scholar
  26. 26.
    Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W., Jr. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing,8(5), 831–846.Google Scholar
  27. 27.
    Smith, P. J., Neil, C., Shafi, M., & Dmochowski, P. A. (2014). On the convergence of massive MIMO systems. In Proceedings of IEEE international conference on communications (ICC) (pp. 5191–5196).Google Scholar
  28. 28.
    Liang, L., Xu, W., & Dong, X. (2014) Low-complexity hybrid precoding in massive multiuser MIMO systems. arXiv:1410.3947.
  29. 29.
    Ni, W., Dong, X., & Lu, W. S. (2015). Near-optimal hybrid processing for massive MIMO systems via matrix decomposition. https://arxiv.org/abs/1504.03777.
  30. 30.
    Ram, G., Mandal, D., Kar, R., & Ghoshal, S. (2015). Cat swarm optimization as applied to time-modulated concentric circular antenna array: Analysis and comparison with other stochastic optimization methods. IEEE Transactions on Antennas and Propagation,63(9), 4180–4183.Google Scholar
  31. 31.
    Payami, S., Ghoraishi, M., & Dianati, M. (2016). Hybrid beamforming for large antenna arrays with phase shifter selection. IEEE Transactions on Wireless Communications,15(11), 7258–7271.Google Scholar
  32. 32.
    Alkhateeb, A., Leus, G., & Heath, R. W., Jr. (2015). Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Transactions on Wireless Communications,14(11), 6481–6494.Google Scholar
  33. 33.
    Ni, W., & Dong, X. (2016). Hybrid block diagonalization for massive multiuser MIMO systems. IEEE Transactions on Communications,64(1), 201–211.MathSciNetGoogle Scholar
  34. 34.
    Song, N., Sun, H., & Yang, T. (2016). Coordinated hybrid beamforming for millimeter wave multi-user massive MIMO systems. In Proceedings of IEEE Global Communications Conference (GLOBECOM’16) (pp. 1–6).Google Scholar
  35. 35.
    Rajashekar, R., & Hanzo, L. (2017). Iterative matrix decomposition aided block diagonalization for mm-wave multiuser MIMO systems. IEEE Transactions on Wireless Communications,16(3), 1372–1384.Google Scholar
  36. 36.
    Sohrabi, F., & Yu, W. (2015) Hybrid digital and analog beamforming design for large-scale MIMO systems. In Proceedings of IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 2929–2933).Google Scholar
  37. 37.
    Huang, S.-C., Fang, W.-H., Chen, H.-S., & Chen, Y.-T. (2010). Hybrid genetic algorithm for joint precoding and transmit antenna selection in multiuser MIMO systems with limited feedback. In Proceedings of VTC-Spring, Taipei, Taiwan (pp. 1–5).Google Scholar
  38. 38.
    Alluhaibi, O., Ahmed, Q. Z., Wang, J., & Zhu, H. (2017). Hybrid digital-to analog precoding design for mm-wave systems. In Proceedings of IEEE international conference on communications (ICC), Paris, France (pp. 1–6).Google Scholar
  39. 39.
    Chen, Y., Xia, Y., Xing, Y., & Yang, L. (2017). Low complexity hybrid precoding for mmWave Massive MIMO systems’ (pp. 1–5). Newark, NJ: WOCC IEEE.Google Scholar
  40. 40.
    Zhuang, Z., Wei, Z., Li, N., & Sang, L. (2017). Discrete phase-only hybrid BF method in MIMO system based on genetic algorithm (pp. 650–654). Chengdu: ICCT IEEE.Google Scholar
  41. 41.
    Singh, U., & Salgotra, R. (2018). Synthesis of linear antenna array using flower pollination algorithm. Neural Computing and Applications,29(2), 435–445.Google Scholar
  42. 42.
    Zhang, C., Fu, X., Leo, L., Peng, S., & Xie, M. (2018). Synthesis of broadside linear aperiodic arrays with sidelobe suppression and null steering using whale optimization algorithm. IEEE Antennas and Wireless Propagation Letters,17(2), 347–350.Google Scholar
  43. 43.
    Shu, F., Wu, X., Hu, J., Li, J., Chen, R., & Wang, J. (2018). Secure and precise wireless transmission for random-subcarrier-selection-based directional modulation. IEEE Journal on Selected Areas in Communications,36(4), 890–904.Google Scholar
  44. 44.
    Wang, Zhengwang, Shu, Feng, Chen, Riqing, Yongpeng, Wu, & Jiangzhou, Wang. (2018). Two high-performance schemes of transmit antenna selection for secure spatial modulation. IEEE Transactions on Vehicular Technology,67(9), 8969–8973.Google Scholar
  45. 45.
    Shu, F., Wang, M., Wang, Y., Fan, H., & Lu, J. (2011). An efficient power allocation scheme for leakage-based precoding in multi-cell multiuser MIMO downlink. IEEE Communications Letters,15(10), 1053–1055.Google Scholar
  46. 46.
    Xu, L., Shu, F., Wang, J., Zhu, W., & Zhou, X. (2018). Artificial-noise-aided secure multicast precoding for directional modulation systems. IEEE Transactions on Vehicular Technology,67(7), 6658–6662.Google Scholar
  47. 47.
    Almagboul, M. A., Shu, F., Qin, Y., Zhou, X., Wang, J., Qian, Y., et al. (2018). An efficient hybrid beamforming design for massive MIMO receive systems via SINR maximization based on an improved bat algorithm. arXiv:1811.01176 [cs.IT].
  48. 48.
    Carlson, B. D. (1988). Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems,24(4), 397–401.Google Scholar
  49. 49.
    Zhang, M., Zhang, A., & Yang, Q. (2016). ’Robust adaptive beamforming based on conjugate gradient algorithms’. IEEE Transactions on Signal Processing,64(22), 6046–6057.MathSciNetzbMATHGoogle Scholar
  50. 50.
    Van Veen, B. D., & Buckley, K. M. (1988). Beamforming: A versatile approach to spatial filtering. IEEE ASSP Magazine,5, 4–24.Google Scholar
  51. 51.
    Manolakis, D. G., Ingle, V. K., & Kogon, S. M. (2005). Statistical and adaptive signal processing. New York: McGraw-Hill.Google Scholar
  52. 52.
    Anderson, S., Millnert, M., Viberg, M., & Wahlberg, B. (1991). Anadaptive array for mobile communication systems. IEEE Transactions on Vehicular Technology,40, 230–236.Google Scholar
  53. 53.
    Yang, H., & Marzetta, T. L. (2013). Performance of conjugate and zero-forcing beamforming in large-scale antenna systems. IEEE Journal on Selected Areas in Communications,31(2), 172–179.Google Scholar
  54. 54.
    Kavousi-Fard, A., Niknam, T., & Fotuhi-Firuzabad, M. (2015). Stochastic reconfiguration and optimal coordination of V2G plug-in electric vehicles considering correlated wind power generation. IEEE Transactions on Sustainable Energy,6(3), 822–830.Google Scholar
  55. 55.
    Chaturvedi, K. T., Pandit, M., & Srivastava, L. (2008). Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch. IEEE Transactions on Power Systems,23(3), 1079–1087.Google Scholar
  56. 56.
    Jiejin, C., Xiaqqian, M., Lixiang, L., & Haipeng, P. (2007). Chaotic particle swarm optimization for economic dispatch considering the generator constraints. Energy Conversion and Management,48, 645–653.Google Scholar
  57. 57.
    Panigrahi, B. K., & Pandi, V. R. (2008). Bacterial foraging optimization: Nelder–Mead hybrid algorithm for economic load dispatch. IET Generation, Transmission and Distribution,2(4), 556–565.Google Scholar
  58. 58.
    Yang, X. S., Sadat Hosseini, S. S., & Gandomi, A. H. (2012). Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Applied Soft Computing,12, 1180–1186.Google Scholar
  59. 59.
    Kavousi-Fard, A., Niknam, T., & Fotuhi-Firuzabad, M. (2016). A novel stochastic framework based on cloud theory and θ-modified bat algorithm to solve the distribution feeder reconfiguration. IEEE Transactions on Smart Grid,7(2), 740–750.Google Scholar
  60. 60.
    Bernardino, H. S., Barbosa, H. J., Lemonge, A. C., & Fonseca, L. G. (2008) A new hybrid AIS-GA for constrained optimization problems in mechanical engineering. In: IEEE congress on evolutionary computation, 2008. CEC 2008 (IEEE world congress on computational intelligence) (pp. 1455–1462). http://dx.doi.org/10.1109/CEC.2008.4630985.
  61. 61.
    Mezura-Montes, E., & Hernández-Ocana, B. (2008). Bacterial foraging for engineering design problems: Preliminary results. In Proceedings of the 4th Mexican congress on evolutionary computation (COMCEV 2008).Google Scholar
  62. 62.
    Zhang, C., Liang, Y., Huang, J., & Wu, S. Yang. (2009). An effective multi agent evolutionary algorithm integrating a novel roulette inversion operator for engineering optimization. Applied Math and Computation,211(2), 392–416.  https://doi.org/10.1016/j.amc.2009.01.048.MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Zahara, E., & Kao, Y.-T. (2009). Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Systems with Applications,36(2, Part 2), 3880–3886.Google Scholar
  64. 64.
    Aragón, V. S., Esquivel, S. C., & Coello, C. A. (2010). A modified version of a T-Cell Algorithm for constrained optimization problems. International Journal for Numerical Methods in Engineering,84, 351–378.zbMATHGoogle Scholar
  65. 65.
    Kaveh, S. T. (2010). A novel heuristic optimization method: Charged system search. Acta Mechanica,213(3–4), 267–289.  https://doi.org/10.1007/s00707-009-0270-4.CrossRefzbMATHGoogle Scholar
  66. 66.
    Datta, J. R. (2011). Figueira, A real-integer-discrete-coded particle swarm optimization for design problems. Applied Soft Computing,11(4), 3625–3633.  https://doi.org/10.1016/j.asoc.2011.01.034.CrossRefGoogle Scholar
  67. 67.
    Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2011). Mixed variable structural optimization using firefly algorithm. Computers & Structures,89(23–24), 2325–2336.  https://doi.org/10.1016/j.compstruc.2011.08.002.CrossRefGoogle Scholar
  68. 68.
    Gandomi, X.-S., Yang, A., & Alavi, S. (2013). Talatahari, Bat algorithm for con-strained optimization tasks. Neural Computing and Applications,22(6), 1239–1255.  https://doi.org/10.1007/s00521-012-1028-9.CrossRefGoogle Scholar
  69. 69.
    Sadollah, A., Bahreininejad, H., & Eskandar, M. Hamdi. (2013). Mine blast algorithm: Anew population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing,13(5), 2592–2612.  https://doi.org/10.1016/j.asoc.2012.11.026.CrossRefGoogle Scholar
  70. 70.
    Gandomi, A. H. (2014). Interior search algorithm (ISA): A novel approach for global optimization. ISA transactions, 53(4), 1168–1183.Google Scholar
  71. 71.
    Yılmaza, S., & Küçüksille, E. U. (2015). A new modification approach on bat algorithm for solving optimization problems. Applied Soft Computing,28, 259–275.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.E&C Engineering DepartmentSardar Vallabhbhai Patel Institute of TechnologyVasad, AnandIndia
  2. 2.Akota-VadodaraIndia
  3. 3.VadodaraIndia

Personalised recommendations