Wireless Personal Communications

, Volume 109, Issue 4, pp 2663–2682 | Cite as

Iterative Self-Interference Mitigation in Full-Duplex Wireless Communications

  • Long D. LeEmail author
  • Ha H. Nguyen


This paper considers a full-duplex wireless communication system in which detection of the desired signal is hindered not only by the self-interference (SI), but also phase noise, in-phase and quadrature-phase imbalance and power amplifier’s nonlinearity distortion. An iterative algorithm is proposed in which the processes of SI cancellation and detection of the desired signal aid each other in each iteration. In each iteration, the SI cancellation process performs widely linear estimation of the SI channel and compensates for physical impairments to improve the detection performance of the desired signal. The detected desired signal is in turn removed from the received signal to improve SI channel estimation and SI cancellation in the next iteration. Simulation results show that the proposed algorithm significantly outperforms existing algorithms in SI cancellation and detection of the desired signal.


Full-duplex Self-interference Self-interference cancellation Phase noise I/Q imbalance Power amplifier’s nonlinearity distortion 



  1. 1.
    Zhang, Z., Long, K., Vasilakos, A. V., & Hanzo, L. (2016). Full-duplex wireless communications: Challenges, solutions, and future research directions. Proceedings of the IEEE, 104(7), 1369–1409.CrossRefGoogle Scholar
  2. 2.
    Sabharwal, A., Schniter, P., Guo, D., Bliss, D. W., Rangarajan, S., & Wichman, R. (2014). In-band full-duplex wireless: Challenges and opportunities. IEEE Journal on Selected Areas in Communications, 32(9), 1637–1652.CrossRefGoogle Scholar
  3. 3.
    Duarte, M., & Sabharwal, A. (2010). Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results. The forty fourth Asilomar conference on signals, systems and computers, pp. 1558–1562.Google Scholar
  4. 4.
    Duarte, M., Dick, C., & Sabharwal, A. (2012). Experiment-driven characterization of full-duplex wireless systems. IEEE Transactions on Wireless Communications, 11(12), 4296–4307.CrossRefGoogle Scholar
  5. 5.
    Li, S., & Murch, R. D. (2014). An investigation into baseband techniques for single-channel full-duplex wireless communication systems. IEEE Transactions on Wireless Communications, 13(9), 4794–4806.CrossRefGoogle Scholar
  6. 6.
    Korpi, D., Anttila, L., Syrjala, V., & Valkama, M. (2014). Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver. IEEE Journal on Selected Areas in Communications, 32(9), 1674–1687.CrossRefGoogle Scholar
  7. 7.
    Ahmed, E., & Eltawil, A. M. (2015). All-digital self-interference cancellation technique for full-duplex systems. IEEE Transactions on Wireless Communications, 14(7), 3519–3532.CrossRefGoogle Scholar
  8. 8.
    Syrjala, V., Valkama, M., Anttila, L., Riihonen, T., & Korpi, D. (2014). Analysis of oscillator phase-noise effects on self-interference cancellation in full-duplex OFDM radio transceivers. IEEE Transactions on Wireless Communications, 13(6), 2977–2990.CrossRefGoogle Scholar
  9. 9.
    Quan, X., Liu, Y., Shao, S., Huang, C., & Tang, Y. (2017). Impacts of phase noise on digital self-interference cancellation in full-duplex communications. IEEE Transactions on Signal Processing, 65(7), 1881–1893.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Samara, L., Mokhtar, M., Ozdemir, O., Hamila, R., & Khattab, T. (2017). Residual self-interference analysis for full-duplex OFDM transceivers under phase noise and I/Q imbalance. IEEE Communications Letters, 21(2), 314–317.CrossRefGoogle Scholar
  11. 11.
    Austin, A. C. M., Balatsoukas-Stimming, A., & Burg, A. (2016). Digital predistortion of power amplifier non-linearities for full-duplex transceivers. 2016 IEEE 17th international workshop on signal processing advances in wireless communications, pp. 1–5.Google Scholar
  12. 12.
    Anttila, L., Korpi, D., Syrjala, V., & Valkama, M. (2013). Cancellation of power amplifier induced nonlinear self-interference in full-duplex transceivers. 2013 Asilomar conference on signals, systems and computers, pp. 1193–1198.Google Scholar
  13. 13.
    Schenk, T. (2008). RF imperfections in high-rate wireless systems: Impact and digital compensation. Dordrecht: Springer.CrossRefGoogle Scholar
  14. 14.
    Rice, M. (2009). Digital communications: A discrete-time approach. Upper Saddle River: Pearson Prentice Hall.Google Scholar
  15. 15.
    Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. 16.
    Demir, A., Mehrotra, A., & Roychowdhury, J. (2000). Phase noise in oscillators: A unifying theory and numerical methods for characterization. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(5), 655–674.CrossRefGoogle Scholar
  17. 17.
    Petrovic, D., Rave, W., & Fettweis, G. (2007). Effects of phase noise on OFDM systems with and without PLL: Characterization and compensation. IEEE Transactions on Communications, 55(8), 1607–1616.CrossRefGoogle Scholar
  18. 18.
    Zhao, S., Zhu, X., Wang, H., & Wu, L. (2013). Analysis of joint effect of phase noise, IQ imbalance and amplifier nonlinearity in OFDM system. In International conference on wireless communications and signal processing, pp. 1–6.Google Scholar
  19. 19.
    Banelli, P., & Cacopardi, S. (2000). Theoretical analysis and performance of OFDM signals in nonlinear AWGN channels. IEEE Transactions on Communications, 48(3), 430–441.CrossRefGoogle Scholar
  20. 20.
    Bussgang, J. J. (1952). Crosscorrelation functions of amplitude distorted Gaussian signals. Cambridge: Research Laboratory of Electronics, Massachusetts Institute of Technology.Google Scholar
  21. 21.
    Zou, Q. (2008). Signal processing for RF distortion compensation in wireless communication systems. Ph.D. Dissertation, University of California, Los Angeles.Google Scholar
  22. 22.
    Tubbax, J., Come, B., Van der Perre, L., Donnay, S., Engels, M., De Man, H., et al. (2005). Compensation of IQ imbalance and phase noise in OFDM systems. IEEE Transactions on Wireless Communications, 4(3), 872–877.CrossRefGoogle Scholar
  23. 23.
    Tubbax, J., Come, B., Van der Perre, L., Donnay, S., Engels, M., & Desset, C. (2003). Joint compensation of IQ imbalance and phase noise. In The 57th IEEE semiannual vehicular technology conference (Vol. 3, pp. 1605–1609).Google Scholar
  24. 24.
    Garcia, M. J. F. G., Paez-Borrallo, J. M., Zazo, S. (2001). DFT-based channel estimation in 2D-pilot-symbol-aided OFDM wireless systems. In 53rd IEEE vehicular technology conference (Vol. 2, pp. 810–814).Google Scholar
  25. 25.
    Kang, Y., Kim, K., & Park, H. (2007). Efficient DFT-based channel estimation for OFDM systems on multipath channels. IET Communications, 1(2), 197–202.CrossRefGoogle Scholar
  26. 26.
    Hou, X., Zhang, Z., & Kayama, H. (2007). Low-complexity enhanced DFT-based channel estimation for OFDM systems with virtual subcarriers. In IEEE 18th international symposium on personal, indoor and mobile radio communications, pp. 1–5 .Google Scholar
  27. 27.
    Doukopoulos, X. G., & Legouable, R. (2007). Robust channel estimation via FFT interpolation for multicarrier systems. In IEEE 65th vehicular technology conference, pp. 1861–1865.Google Scholar
  28. 28.
    Erceg, V., et al. (2004). IEEE P802.11 wireless LANs.Google Scholar
  29. 29.
    Li, W., Lilleberg, J., & Rikkinen, K. (2014). On rate region analysis of half- and full-duplex OFDM communication links. IEEE Journal on Selected Areas in Communications, 32(9), 1688–1698.CrossRefGoogle Scholar
  30. 30.
    Smaini, L. (2012). RF analog impairments modeling for communication systems simulation: Application to OFDM-based transceivers. London: Wiley.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations