Wireless Personal Communications

, Volume 109, Issue 4, pp 2199–2211 | Cite as

Performance Analysis of the Hybrid MMW RF/FSO Transmission System

  • Wafaa M. R. ShakirEmail author


In this paper, an exact performance analysis for the hybrid radio frequency/free space optical (RF/FSO) communication system based on receiver diversity combining technique is presented. The hybrid system transmits the same data with the same data rate over the RF and FSO links simultaneously. The selection combining technique is implemented to combine the received signals from both link. New closed-form expressions for the average bit error rate and outage probability are derived in order to trace the system’s performance under the combination of the atmospheric turbulence and weather conditions variation. The analysis of the hybrid system’s performance clearly indicates that the system is advantageous as it exploits the complementary properties of the FSO and RF channels. In addition, the performance comparison demonstrates the hybrid system’s superior performance compared with the FSO and RF systems over a different variation of the atmospheric channel.


Optical systems Millimeter wavelength (MMW) Hybrid radio frequency/free space optical (RF/FSO) Receiver diversity combining Weather conditions Atmospheric turbulence 



  1. 1.
    Makki, B., Svensson, T., & Alouini, M. (2016). On the performance of millimeter wave-based RF-FSO links with HARQ feedback. In Proceedings of IEEE PIMRC 27th international symposium on personal, indoor, and mobile radio communications, Valencia, Spain, 2016 (pp. 1–6).Google Scholar
  2. 2.
    Nadeem, F., Leitgeb, E., Awan, M., & Kandus, G. (2009). FSO/RF hybrid network availability analysis under different weather condition. In Proceedings of 2009 3rd international conference on next generation mobile applications, services and technologies, Wales, UK (pp. 239–244).Google Scholar
  3. 3.
    Stotts, L. B., Andrews, L. C., Cherry, P. C., Foshee, J. J., et al. (2009). Hybrid optical RF airborne communications. Proceedings of the IEEE,97(6), 1109–1127.CrossRefGoogle Scholar
  4. 4.
    Hong-jun, L. (2014). Overview of U.S. military airborne RF and FSO hybrid communication. Telecommunication Engineering,54(2), 1711–1716.Google Scholar
  5. 5.
    Son, I. K., & Mao, S. (2017). A survey of free space optical networks. Digital Communications and Networks Journal,3(2), 67–77.CrossRefGoogle Scholar
  6. 6.
    Murat, U., Capsoni, C., & Ghassemlooy, Z. (2016). Optical wireless communications: An emerging technology. Berlin: Springer.Google Scholar
  7. 7.
    Esmail, M., Fathallah, H., & Alouini, M. (2016). Outdoor FSO communications under fog: Attenuation modeling and performance evaluation. IEEE Photonics Journal,8(4), 22.CrossRefGoogle Scholar
  8. 8.
    Turán, J., & Ovseník, Ľ. (2016). Experimental FSO network availability estimation using interactive fog condition monitoring. In Proceedings of 20th Slovak-Czech-Polish optical conference on wave and quantum aspects of contemporary optics, Jasna, Slovakia (Vol. 10142, pp. 1014223–1014223-16).Google Scholar
  9. 9.
    Esmail, M. A., Fathallah, H., & Alouini, M. (2017). Outage probability analysis of FSO links over foggy channel. IEEE Photonics Journal,9(2), 1–12.CrossRefGoogle Scholar
  10. 10.
    Esmail, M. A., Fathallah, H., & Alouini, M. (2017). On the performance of optical wireless links over random foggy channels. IEEE Access,5, 2894–2903.CrossRefGoogle Scholar
  11. 11.
    Kim, I. I., & Korevar, E. J. (2001). Availability of free space optics (FSO) and hybrid FSO/RF systems. In Proceedings of SPIE optical wireless communication IV (Vol. 4530, pp. 84–95).Google Scholar
  12. 12.
    Nadeem, F., Kvicera, V., Awan, M., Leitgeb, E., Muhammad, S., & Kandus, G. (2009). Weather effects on hybrid FSO/RF communication link. IEEE Journal on Selected Areas in Communications,27(9), 1687–1697.CrossRefGoogle Scholar
  13. 13.
    Khan, M., & Jamil, M. (2016). Adaptation of hybrid FSO/RF communication system using puncturing technique. Radioengineering Journal,25(4), 644–651.CrossRefGoogle Scholar
  14. 14.
    Makki, B., Svensson, T., Eriksson, T., & Alouini, M. (2016). On the performance of RF-FSO links with and without hybrid ARQ. IEEE Transactions on Wireless Communications,15(7), 4928–4943.Google Scholar
  15. 15.
    Khan, M., & Jamil, M. (2017). Adaptive hybrid free space optical/radio frequency communication system. Telecommunication Systems,65(1), 117–126.CrossRefGoogle Scholar
  16. 16.
    Muneer, U., Yang, H., & Alouini, M. (2014). Performance analysis of switching based hybrid FSO/RF transmission. In Proceedings of IEEE VTC 2014 80th vehicular technology conference, Vancouver, BC, Canada (pp. 1–5).Google Scholar
  17. 17.
    Muneer, U., Yang, H., & Alouini, M. (2014). Practical switching-based hybrid FSO/RF transmission and its performance analysis. IEEE Photonics Journal,6(5), 1–13.Google Scholar
  18. 18.
    Kaushal, H., & Kaddoum, G. (2017). Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys & Tutorials,19(1), 57–96.CrossRefGoogle Scholar
  19. 19.
    Zedini, E., Ansari, I. S., & Alouini, M. (2015). Performance analysis of mixed Nakagami-m and Gamma–Gamma dual-hop FSO transmission systems. IEEE Photonics Journal,7(1), 1–20.CrossRefGoogle Scholar
  20. 20.
    Anees, S., & Bhatnagar, M. R. (2015). Performance evaluation of decode-and-forward dual-hop asymmetric radio frequency-free space optical communication system. IET Optoelectronics,9(5), 232–240.CrossRefGoogle Scholar
  21. 21.
    Kenneth, S., & Alouini, M. (2005). Digital communication over fading channels (2nd ed.). Hoboken, NJ: Wiley.Google Scholar
  22. 22.
    Abadi, M., Ghassemlooy, Z., Smith, D., Ng, W., Khalighi, M., & Zvanovec, S. (2014). Comparison of different combining methods for space-diversity FSO systems. In Proceedings of 9th international symposium on communication systems, networks & digital sign, Manchester, UK (pp. 1023–1028).Google Scholar
  23. 23.
    Chatzidiamantis, D., Karagiannidis, G., Kriezis, E., & Matthaiou, M. (2011). Diversity combining in hybrid RF/FSO systems with PSK modulation. In Proceedings of IEEE ICC international conference on communications, Kyoto, Japan, June 9–5, 2011 (pp. 1–6).Google Scholar
  24. 24.
    Shakir, W. (2017). Performance evaluation of selection combining scheme for hybrid FSO/RF systems. IEEE Photonics Journal, 9(6), 1–10.CrossRefGoogle Scholar
  25. 25.
    Rappaport, T., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access,1, 335–349.CrossRefGoogle Scholar
  26. 26.
    Andrews, J. G., Bai, T., Kulkarni, T., Alkhateeb, M. N., Gupta, A., & Heath, R. W. (2016). Modeling and analyzing millimeter wave cellular systems. IEEE Transactions on Communications,65(1), 403–430.Google Scholar
  27. 27.
    Pham, A., Phuc, T., & Vuong, M. (2015). Hybrid free-space optics/millimeter-wave architecture for 5G cellular backhaul networks. In Proceedings of IEEE OECC opto-electronics and communications conference, Shanghai, China (pp. 1–3).Google Scholar
  28. 28.
    Al-Habash, M. A. (2001). Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Optical Engineering,40(8), 1554–1562.CrossRefGoogle Scholar
  29. 29.
    Kaushal, H., Jain, V. K., & Kar, S. (2017). Free space optical communication. New Delhi: Springer.CrossRefGoogle Scholar
  30. 30.
    Nistazakis, H., Tsiftsis, T., & Tombras, G. (2009). Performance analysis of free-space optical communication systems over atmospheric turbulence channels. IET Communications Journal,3(8), 1402–1409.CrossRefGoogle Scholar
  31. 31.
    Uysal, M., Li, J., & Yu, M. (2006). Error rate performance analysis of coded free-space optical links over gamma–gamma atmospheric turbulence channels. IEEE Transactions on Wireless Communications,5(6), 1229–1233.CrossRefGoogle Scholar
  32. 32.
    Ansari, I., Al-Ahmadi, S., Yilmaz, F., Alouini, M., & Yanikomeroglu, H. (2011). A new formula for the BER of binary modulations with dual-branch selection over generalized-K composite fading channels. IEEE Transactions on Communications,59(10), 2654–2658.CrossRefGoogle Scholar
  33. 33.
    Sagias, N. C., Zogas, D. A., & Kariaginnidis, G. K. (2005). Selection diversity receivers over nonidentical Weibull fading channels. IEEE Transactions on Vehicular Technology,54(6), 2146–2151.CrossRefGoogle Scholar
  34. 34.
    Gradshteyn, I., & Ryzhik, I. (2000). Table of integrals, series and products. New York: Academic Press.zbMATHGoogle Scholar
  35. 35.
    Kim, I. I., McArthur, B., & Korevaar, E. J. (2001). Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. In Proceedings of optical wireless communications III (Vol. 4214, pp. 26–37).Google Scholar
  36. 36.
    ITU-R. (1999). P. 838-1: Specific attenuation model for rain for use in prediction methods.Google Scholar
  37. 37.
    Kazemi, H., Murat, U., & Touati, F. (2015). Outage performance of multi-hop hybrid FSO/RF communication systems. In Proceedings of 4th IWOW international workshop on optical wireless communications (pp. 83–87).Google Scholar
  38. 38.
    Vuong, M., & Pham, A. (2015). Performance analysis of parallel FSO/MMW systems with adaptive rate under weather effects. In Proceedings of 21st APCC AsiaPacific conference on communications, Kyoto, Japan (pp. 193–198).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Systems, Technical Institute of BabylonAl-Furat Al-Awsat Technical UniversityBabilIraq

Personalised recommendations