Wireless Personal Communications

, Volume 109, Issue 3, pp 2077–2094 | Cite as

Design and Analysis of Microstrip Patch Antenna Using Periodic EBG Structure for C-Band Applications

  • Taksala Devapriya AmalrajEmail author
  • Robinson Savarimuthu


In this paper, an Electromagnetic Band Gap structured microstrip patch antenna is presented. The proposed antenna consists of a rectangular patch which is fed by way of 50 Ω microstrip line feed. This antenna occupies a totally very small area of 22 × 22 × 0.8 mm3 etched on FR4 substrate, making it suitable for C-Band applications. The substrate has relative permittivity of 4.4. The unit cells are etched on the dielectric substrate with 10 mm × 10 mm size. This antenna improves the gain and decreases the return losses. This proposed antenna has the improve gain of 8.5112 dB. The merits are miniaturized size and at comfortable structure.


EBG Microstrip patch antenna Surface wave 



  1. 1.
    Islam, M. T., Alam, M. S., & Yatim, B. (2015). Development of high gain multiband antenna with centre-offset copper strip-based periodic structure. Microwave and Optical Technology Letters,57(7), 1608–1614.Google Scholar
  2. 2.
    Chatterjee, A., & Parui, S. K. (2017). Frequency-dependent directive radiation of monopole-dielectric resonator antenna using a conformal frequency selective surface. IEEE Transactions on Antennas and Propagation,10(1109), 1–7.Google Scholar
  3. 3.
    Dewan, R., Rahim, M. K. A., & Himdi, M. (2017). Multiband frequency-reconfigurable antenna using metamaterial structure of electromagnetic band gap. Applied Physics A,1(1007), 1–7.Google Scholar
  4. 4.
    Wang, Z. K., Yuan, B., & Zhang, X. H. (2016). An axial-ratio beam-width enhancement of patch-slot antenna based on EBG. Microwave and Optical Technology Letters,10(1109), 1–4.Google Scholar
  5. 5.
    Jaglan, N., Gupta, S. D., & Kanaujia, B. K. (2016). Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structures. Wireless Network,7(1007), 1–11.Google Scholar
  6. 6.
    Mittal, N., Khanna, R., & Kaur, J. (2016). Performance improvement of U-slot microstrip patch antenna for RF portable devices using electromagnetic band gap and defected ground structure. International Journal of Wireless and Microwave Technologies,3, 20–28.Google Scholar
  7. 7.
    Yang, F., & Rahmat-Samii, Y. (2003). Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Transactions on Antennas and Propagation,51(10), 2936–2946.Google Scholar
  8. 8.
    Liang, B., Sanz-Izquierdo, B., & Parker, E. A. (2015). A frequency and polarization reconfigurable circularly polarized antenna using active EBG structure for satellite navigation. IEEE Transactions on Antennas and Propagation,63(1), 33–40.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Javid Asad, M., & Farhan Shafique, M. (2015). Performance degradation of cavity backed patch antenna due to dielectric coating and its improvement. Wireless Personal Communication,5(10), 1–15.Google Scholar
  10. 10.
    Zhang, J., Ci, G., & Cao, Y. (2017). A wide bandgap slot fractal UC-EBG based on moore space-filling geometry for microwave application. IEEE Antennas and Wireless Propagation Letters,59(3), 493–497.Google Scholar
  11. 11.
    Kurra, L., Abegaonkar, M. P., & Basu, A. (2016). FSS properties of a uni-planar EBG and its application in directivity enhancement of a microstrip antenna. IEEE Antennas and Wireless Propagation Letters,5(10), 1–4.Google Scholar
  12. 12.
    Lamminen, A. E. I., Vimpari, A. R., & Säily, J. (2009). UC-EBG on LTCC for 60-GHz frequency band antenna applications. IEEE Transactions on Antennas and Propagation,57(10), 2904–2912.Google Scholar
  13. 13.
    Ismail, M. F., Rahim, M. K. A., & Yusoff, M. F. M. (2017). Pattern reconfigurable antenna using electromagnetic band gap structure. Applied Physics A,10(17), 1–5.Google Scholar
  14. 14.
    Feresidis, A. P., Goussetis, S. W., & Vardaxoglou, J. C. (2005). Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Transactions on Antennas and Propagation,53(1), 209–215.Google Scholar
  15. 15.
    Han, Z.-J., Song, W., & Sheng, X.-Q. (2017). Gain enhancement and RCS reduction for patch antenna by using polarization-dependent EBG surface. IEEE Antennas and Wireless Propagation Letters,10(1109), 1–4.Google Scholar
  16. 16.
    Li, Y., & Luk, K.-M. (2015). 60-GHz substrate integrated waveguide fed cavity-backed aperture-coupled microstrip patch antenna arrays. IEEE Transactions on Antennas and Propagation,10(11), 1–10.MathSciNetzbMATHGoogle Scholar
  17. 17.
    Rahman, M., & Stuchly, M. A. (2002). Circularly polarised patch antenna with periodic structure. IEEE Microwave Antenna Propagation,149(3), 141–146.Google Scholar
  18. 18.
    Hashmi, R. M., & Esselle, K. P. (2015). A wideband EBG resonator antenna with an extremely small footprint area. Microwave and Optical Technology Letters,57(7), 1531–1535.Google Scholar
  19. 19.
    Yang, X., Liu, Y., & Y, X. (2017). Isolation enhancement in patch antenna array with fractal UC-EBG structure and cross slot. IEEE Antennas and Wireless Propagation Letters,1(11), 1–4.Google Scholar
  20. 20.
    Kim, I., Park, B., & Lee, J.-H. (2015). Varactor diode integrated dipole-EBG base-station antenna: Enhancing tilted radiation pattern. Microwave and Optical Technology Letters,57(8), 1794–1799.Google Scholar
  21. 21.
    Hashmi, R. M., & Esselle, K. P. (2016). A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products. IEEE Transactions on Antennas and Propagation,10(1), 1–6.MathSciNetzbMATHGoogle Scholar
  22. 22.
    Mavridou, M., & Feresidis, A. P. (2015). Tunable double-layer EBG structures and application to antenna isolation. IEEE Transactions on Antennas and Propagation,10(1), 1–11.MathSciNetzbMATHGoogle Scholar
  23. 23.
    Dadgarpour, A., Virdee, B. S., & Denidni, T. A. (2016). Mutual coupling reduction in dielectric resonator antennas using metasurface shield for 60 GHz MIMO systems. IEEE Antennas and Wireless Propagation Letters,5(1), 1–4.Google Scholar
  24. 24.
    Smyth, B., Barth, S., & Iyer, A. K. (2016). Dual-band microstrip patch antenna using integrated uniplanar metamaterial-based EBGs. IEEE Transactions on Antennas and Propagation,10(3), 1–8.Google Scholar
  25. 25.
    Ceccuzzi, S., Ponti, C., & Schettini, G. (2017). Directive EBG antennas based on lattice modes. IEEE Transactions on Antennas and Propagation,10(1), 1–9.MathSciNetzbMATHGoogle Scholar
  26. 26.
    Yang, W., Che, W., Jin, H., Feng, W., & Xue, Q. (2015). A polarization-reconfigurable dipole antenna using polarization rotation AMC structure. IEEE Transactions on Antennas and Propagation,10(5), 1–11.MathSciNetzbMATHGoogle Scholar
  27. 27.
    Bostani, A. (2017). Design, finite element analysis and implementing a reconfigurable antenna with beam switching operating at ISM band. Progress in Electromagnetics Research Letters,65(5), 69–73.MathSciNetGoogle Scholar
  28. 28.
    Li, Y., Zhang, K., & Yang, L.-A. (2017). Gain enhancement and wideband RCS reduction of a microstrip antenna using triple-band planar electromagnetic band-gap structure. Progress in Electromagnetics Research Letters,65(1), 103–108.Google Scholar
  29. 29.
    El Ghabzouri, M., Salhi, A. E., Anacleto, P., & Mendes, P. M. (2017). Enhanced low profile, dual-band antenna via novel electromagnetic band gap structure. Progress In Electromagnetics Research,71, 79–89.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Taksala Devapriya Amalraj
    • 1
    Email author
  • Robinson Savarimuthu
    • 1
  1. 1.Department of Electronics and Communication EngineeringMount Zion College of Engineering and TechnologyPudukkottaiIndia

Personalised recommendations