Advertisement

Wireless Personal Communications

, Volume 109, Issue 3, pp 2051–2065 | Cite as

BSBL-Based DOA and Polarization Estimation with Linear Spatially Separated Polarization Sensitive Array

  • Binbin Li
  • Weixiong Bai
  • Guimei ZhengEmail author
  • Xingyu He
  • Bin Xue
  • Mingliang Zhang
Article
  • 18 Downloads

Abstract

The problem of multiple incident signals’ direction of arrival (DOA) and polarization estimation with linear spatially separated polarization sensitive array (SS-PSA) is investigated in sparse Bayesian learning (SBL) framework. SS-PSA is widely studied due to its low mutual coupling compared with the spatially collocated polarization sensitive array. On the one hand, the sparse representation of data model of proposed array can be expressed skillfully as a block-sparse representation. On the other hand, block sparse Bayesian learning (BSBL) algorithm has excellent performance in recovering the block-sparse signals. Therefore, in this paper, BSBL algorithm is extended to SS-PSA for DOA and polarization estimation. Firstly, a sparse representation model without parameters coupling is established, where the sparse coefficient vector is a block-sparse signal. Secondly, the expectation–maximization method in BSBL framework, i.e., BSBL-EM algorithm, is proposed to recover the block-sparse signal. Lastly, angles estimation can be obtained from the recovered sparse signal according to the intra-block correlation. Simulation results demonstrate that the BSBL-EM algorithm used in DOA and polarization estimation with SS-PSA exhibits better performance compared with Block Orthogonal Matching Pursuit algorithm and Group Basis Pursuit.

Keywords

Polarization sensitive array Mutual coupling Expectation–maximization method Sparse Bayesian learning DOA estimation Polarization estimation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 61501504.

References

  1. 1.
    Li, J., & Compton, R. T. (1991). Angle and polarization estimation using ESPRIT with a polarization sensitive array. Transactions on Antennas and Propagation,39(9), 1376–1383.CrossRefGoogle Scholar
  2. 2.
    Li, J., & Compton, R. T. (1992). Two-dimensional angle and polarization estimation using the ESPRIT algorithm. Transactions on Antennas and Propagation,40(5), 550–555.CrossRefGoogle Scholar
  3. 3.
    Zoltowski, M. D., & Wong, K. T. (2000). ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors. IEEE Transactions on Signal Processing,48(8), 2195–2204.CrossRefGoogle Scholar
  4. 4.
    Bihan, N. L., Miron, S., & Albera, L. (2007). MUSIC algorithm for vector-sensors array using biquaternions. IEEE Transactions on Signal Processing,55(9), 4523–4533.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chevalier, P., Ferréol, A., Albera, L., et al. (2007). Higher order direction finding from arrays with diversely polarized antennas: The PD-2q-MUSIC algorithms. IEEE Transactions on Signal Processing,55(11), 5337–5350.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Xu, Y., & Liu, Z. (2007). Polarimetric angular smoothing algorithm for an electromagnetic vector-sensor array. IET Radar, Sonar and Navigation,1(3), 230–240.CrossRefGoogle Scholar
  7. 7.
    Gong, X. F., Liu, Z. W., & Xu, Y. G. (2011). Coherent source localization: Bicomplex polarimetric smoothing with electromagnetic vector-sensors. IEEE Transactions on Aerospace and Electronic Systems,47(3), 2268–2285.CrossRefGoogle Scholar
  8. 8.
    He, J., Jiang, S., Wang, J., et al. (2010). Polarization difference smoothing for direction finding of coherent signals. IEEE Transactions on Aerospace and Electronic Systems,46(1), 469–480.CrossRefGoogle Scholar
  9. 9.
    Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory,52(4), 1289–1306.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Tian, Y., Sun, X., & Zhao, S. (2015). Sparse-reconstruction-based direction of arrival, polarization and power estimation using a cross-dipole array. IET Radar, Sonar and Navigation,9(6), 727–731.CrossRefGoogle Scholar
  11. 11.
    Zheng, G., & Zhang, D. (2017). BOMP-based angle estimation with polarimetric MIMO radar with spatially spread crossed-dipole. IET Signal Processing,12(1), 113–118.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Roemer, F., Ibrahim, M., & Alieiev, R. et al.: (2014). Polarimetric compressive sensing based DOA estimation. In International Itg workshop on smart antennas (pp. 1–8).Google Scholar
  13. 13.
    Eldar, Y. C., Kuppinger, P., & Bolcskei, H. (2010). Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Transactions on Signal Processing,58(6), 3042–3054.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Baraniuk, R. G., Cevher, V., Duarte, M. F., et al. (2010). Model-based compressive sensing. IEEE Transactions on Information Theory,56(4), 1982–2001.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society,68, 49–67.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Berg, E. V. D., & Friedlander, M. (2008). Probing the Pareto frontier for basis pursuit solutions. SIAM Journal on Scientific Computing,31(2), 890–912.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Eldar, Y. C., & Mishali, M. (2009). Robust recovery of signals from a structured union of subspaces. IEEE Transactions on Information Theory,55(11), 5302–5316.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zhang, Z., & Rao, B. D. (2013). Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. IEEE Transactions on Signal Processing,61(8), 2009–2015.CrossRefGoogle Scholar
  19. 19.
    Zhang, Z., & Rao, B. D. (2011). Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning. IEEE Journal of Selected Topics in Signal Processing,5(5), 912–926.CrossRefGoogle Scholar
  20. 20.
    Malioutov, D., Cetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing,53(8), 3010–3022.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Panahi, A., & Viberg, M. (2011). On the resolution of the LASSO-based DOA estimation method. In International ITG workshop on smart antennas (WSA) (pp. 1–5).Google Scholar
  22. 22.
    Zheng, J., Kaveh, M., & Tsuji, H. (2009). Sparse spectral fitting for direction of arrival and power estimation. In IEEE/SP 15th workshop on statistical signal processing, (SSP ‘09) (pp. 429–432).Google Scholar
  23. 23.
    Zhang, Z., & Rao, B. D. (2012). Recovery of block sparse signals using the framework of block sparse Bayesian learning. IEEE International Conference on Acoustics,22(10), 3345–3348.Google Scholar
  24. 24.
    Zheng, G., Wu, B., Ma, Y., et al. (2014). Direction of arrival estimation with a sparse uniform array of orthogonally oriented and spatially separated dipole-triads. IET Radar, Sonar and Navigation,8(8), 885–894.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Binbin Li
    • 1
  • Weixiong Bai
    • 1
  • Guimei Zheng
    • 1
    Email author
  • Xingyu He
    • 1
  • Bin Xue
    • 1
  • Mingliang Zhang
    • 2
  1. 1.Air and Missile Defense CollegeAir Force Engineering UniversityXi’anChina
  2. 2.Unit 93557 of the PLABeijingChina

Personalised recommendations