Advertisement

Wireless Personal Communications

, Volume 109, Issue 3, pp 1875–1895 | Cite as

Differential Evolution and Mobile Sink Based On-Demand Clustering Protocol for Wireless Sensor Network

  • Nimisha GhoshEmail author
  • Tripti Prasad
  • Indrajit Banerjee
Article
  • 58 Downloads

Abstract

Efficient cluster formation is an important aspect of wireless sensor networks. But to transfer the data from the cluster heads to the static sink may lead to an energy hole problem where the cluster heads near the sink deplete their energy faster than those away from the sink. Using a mobile sink helps in alleviating this hot-spot problem. This work thus proposes a differential evolution and mobile sink based energy-efficient clustering protocol. In this work, differential evolution has been used to determine the cluster heads and the position of the mobile sink which gathers data from the cluster heads. Moreover, instead of performing clustering in every round, this paper follows an on-demand based clustering. The proposed work has been compared with relevant existing works using MATLAB. The simulation results show that the proposed algorithm can significantly increase the network lifetime and provides good delivery ratio.

Keywords

Clustering Differential evolution Mobile sink Wireless sensor network 

Notes

References

  1. 1.
    Abo-Zahhad, M., Ahmed, S. M., Sabor, N., & Sasaki, S. (2015). Mobile sink-based adaptive immune energy-efficient clustering protocol for improving the lifetime and stability period of wireless sensor networks. IEEE Sensors Journal, 15(8), 4576–4586.CrossRefGoogle Scholar
  2. 2.
    Ahmad, A., Javaid, N., Khan, Z. A., Qasim, U., & Alghamdi, T. A. (2014). \((\text{ ACH })^{2}\) : Routing scheme to maximize lifetime and throughput of wireless sensor networks. IEEE Sensors Journal, 14(10), 3516–3532.CrossRefGoogle Scholar
  3. 3.
    Almi’ani, K., Viglas, A., & Libman, L. (2010, October). Energy-efficient data gathering with tour length-constrained mobile elements in wireless sensor networks. In 2010 IEEE 35th conference on local computer networks (LCN) (pp. 582–589).Google Scholar
  4. 4.
    Cai, Z., Gong, W., Ling, C. X., & Zhang, H. (2011). A clustering-based differential evolution for global optimization. Applied Soft Computing, 11(1), 1363–1379.CrossRefGoogle Scholar
  5. 5.
    Ghosh, N., Sett, R., & Banerjee, I. (Sept 2016). Efficient polling point determination and physical model based throughput maximisation in wireless sensor network. In 2016 24th international conference on software, telecommunications and computer networks (SoftCOM) (pp. 1–5).Google Scholar
  6. 6.
    Ghosh, N., & Banerjee, I. (2015). An energy-efficient path determination strategy for mobile data collectors in wireless sensor network. Computers & Electrical Engineering, 48, 417–435.CrossRefGoogle Scholar
  7. 7.
    Ghosh, N., Sett, R., & Banerjee, I. (2017). An efficient trajectory based routing scheme for delay-sensitive data in wireless sensor network. Computers & Electrical Engineering., 64, 288–304.CrossRefGoogle Scholar
  8. 8.
    Gu, Y., Ren, F., Ji, Y., & Li, J. (2016). The evolution of sink mobility management in wireless sensor networks: A survey. IEEE Communications Surveys Tutorials, 18(1), 507–524.CrossRefGoogle Scholar
  9. 9.
    Halder, U., Das, S., & Maity, D. (2013). A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments. IEEE Transactions on Cybernetics, 43(3), 881–897.CrossRefGoogle Scholar
  10. 10.
    Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRefGoogle Scholar
  11. 11.
    Izadi, D., Abawajy, J., & Ghanavati, S. (2015). An alternative clustering scheme in WSN. IEEE Sensors Journal, 15(7), 4148–4155.CrossRefGoogle Scholar
  12. 12.
    Khan, A. W., Abdullah, A. H., Razzaque, M. A., & Bangash, J. I. (2015). Vgdra: A virtual grid-based dynamic routes adjustment scheme for mobile sink-based wireless sensor networks. IEEE Sensors Journal, 15(1), 526–534.CrossRefGoogle Scholar
  13. 13.
    Kim, J., In, J., Hur, K., Kim, J., & Eom, D. (2010). An intelligent agent-based routing structure for mobile sinks in WSNs. IEEE Transactions on Consumer Electronics, 56(4), 2310–2316.CrossRefGoogle Scholar
  14. 14.
    Kwedlo, W. (2011). A clustering method combining differential evolution with the k-means algorithm. Pattern Recognition Letters, 32(12), 1613–1621.CrossRefGoogle Scholar
  15. 15.
    Lee, E., Park, S., Yu, F., Choi, Y., Jin, M. S., & Kim, S. H. (2008, March). A predictable mobility-based data dissemination protocol for wireless sensor networks. In 22nd international conference on advanced information networking and applications (AINA 2008) (pp. 741–747).Google Scholar
  16. 16.
    Lee, J. S., & Cheng, W. L. (2012). Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication. IEEE Sensors Journal, 12(9), 2891–2897.CrossRefGoogle Scholar
  17. 17.
    Lee, E., Park, S., Seungmin, O., & Kim, S.-H. (2014). Rendezvous-based data dissemination for supporting mobile sinks in multi-hop clustered wireless sensor networks. Wireless Networks, 20(8), 2319–2336.CrossRefGoogle Scholar
  18. 18.
    Liang, W., Luo, J., & Xu, X. (Dec 2010). Prolonging network lifetime via a controlled mobile sink in wireless sensor networks. In 2010 IEEE global telecommunications conference GLOBECOM 2010 (pp. 1–6).Google Scholar
  19. 19.
    Lindsey, S., Raghavendra, C., & Sivalingam, K. M. (2002). Data gathering algorithms in sensor networks using energy metrics. IEEE Transactions on Parallel and Distributed Systems, 13(9), 924–935.CrossRefGoogle Scholar
  20. 20.
    Liu, J.-L., & Ravishankar, C. V. (2011). LEACH-GA: Genetic algorithm-based energy-efficient adaptive clustering protocol for wireless sensor networks. International Journal of Machine Learning and Computing, 1(1), 79–85.CrossRefGoogle Scholar
  21. 21.
    Liu, X., Zhao, H., Yang, X., & Li, X. (2013). Sinktrail: A proactive data reporting protocol for wireless sensor networks. IEEE Transactions on Computers, 62(1), 151–162.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Moh’d Alia, O. (2017). Dynamic relocation of mobile base station in wireless sensor networks using a cluster-based harmony search algorithm. Information Sciences, 385–386, 76–95.CrossRefGoogle Scholar
  23. 23.
    Nayak, P., & Devulapalli, A. (2016). A fuzzy logic-based clustering algorithm for wsn to extend the network lifetime. IEEE Sensors Journal, 16(1), 137–144.CrossRefGoogle Scholar
  24. 24.
    Qasem, A. A., Fawzy, A. E., Shokair, M., Saad, W., El-Halafawy, S., & Elkorany, A. (2017). Energy efficient intra cluster transmission in grid clustering protocol for wireless sensor networks. Wireless Personal Communications., 97, 915–932.CrossRefGoogle Scholar
  25. 25.
    Salarian, H., Chin, K. W., & Naghdy, F. (2014). An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Transactions on Vehicular Technology, 63(5), 2407–2419.CrossRefGoogle Scholar
  26. 26.
    Shah, R. C., Roy, S., Jain, S., & Brunette, W. (May 2003). Data mules: Modeling a three-tier architecture for sparse sensor networks. In 2003 IEEE international workshop on sensor network protocols and applications, 2003. Proceedings of the first IEEE (pp. 30–41).Google Scholar
  27. 27.
    Shi, Y., & Hou, Y. T. (2008, April). Theoretical results on base station movement problem for sensor network. In IEEE INFOCOM 2008—The 27th conference on computer communications.Google Scholar
  28. 28.
    Somasundara, A. A., Ramamoorthy, A., & Srivastava, M. B. (2007). Mobile element scheduling with dynamic deadlines. IEEE Transactions on Mobile Computing, 6(4), 395–410.CrossRefGoogle Scholar
  29. 29.
    Thakkar, A., & Kotecha, K. (2014). Cluster head election for energy and delay constraint applications of wireless sensor network. IEEE Sensors Journal, 14(8), 2658–2664.CrossRefGoogle Scholar
  30. 30.
    Tvrdík, J., & Křivý, I. (2015). Hybrid differential evolution algorithm for optimal clustering. Applied Soft Computing, 35, 502–512.CrossRefGoogle Scholar
  31. 31.
    Vijayvargiya, K. G., & Shrivastava, V. (2012). An amend implementation on leach protocol based on energy hierarchy. International Journal of Current Engineering and Technology, 2(4), 427–431.Google Scholar
  32. 32.
    Wang, C. F., Shih, J. D., Pan, B. H., & Wu, T. Y. (2014). A network lifetime enhancement method for sink relocation and its analysis in wireless sensor networks. IEEE Sensors Journal, 14(6), 1932–1943.CrossRefGoogle Scholar
  33. 33.
    Wang, J., Cao, Y., Li, B., Kim, H. J., & Lee, S. (2016). Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Generation Computer Systems, 76, 452–457.CrossRefGoogle Scholar
  34. 34.
    Zhao, M., & Yang, Y. (2012). Bounded relay hop mobile data gathering in wireless sensor networks. IEEE Transactions on Computers, 61(2), 265–277.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhu, C., Wu, S., Han, G., Shu, L., & Wu, H. (2015). A tree-cluster-based data-gathering algorithm for industrial WSNs with a mobile sink. IEEE Access, 3, 381–396.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and Information Technology, Institute of Technical Education and ResearchSiksha ‘O’ Anusandhan (Deemed to be University)BhubaneswarIndia
  2. 2.Department of Information TechnologyIndian Institute of Engineering Science and TechnologyShibpur, HowrahIndia

Personalised recommendations