Wireless Personal Communications

, Volume 109, Issue 3, pp 1845–1862 | Cite as

Energy-Efficient Power Allocation with Guaranteed QoS Under Imperfect Sensing for OFDM-Based Heterogeneous Cognitive Radio Networks

  • Cynthia Anbuselvi ThangarajEmail author
  • T. Aruna


This paper investigates the energy efficient resource allocation scheme for orthogonal frequency division multiplexing based heterogeneous cognitive radio network (HCRN) under imperfect spectrum sensing scenario with guaranteed quality of service (QoS). The objective of this paper is to maximize the energy efficiency (EE) of the HCRN subject to total transmission power, interference and QoS Constraints. To solve the mixed integer nonlinear programming problem efficiently, the primal problem has been transformed into a linear programming problem by separating the resource allocation scheme into two steps, i.e., subcarrier assignment and power allocation. Consequently an energy efficient power allocation (EEPA) algorithm has been anticipated based on fractional programming and sub-gradient method. Numerical results confirm that the proposed EEPA algorithm can achieve higher EE than conventional equal power allocation method.


Cognitive radio network Heterogeneous Energy efficiency Power allocation Imperfect sensing QoS 



  1. 1.
    Federal Communications Commission Spectrum Policy Task Force. (2002). Report of the spectrum efficiency working group.
  2. 2.
    Mitola, J. (2002). Cognitive radio—an integrated agent architecture for software defined radio: 0474–0474. Stockholm: Royal Institute of Technology.Google Scholar
  3. 3.
    Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications,6(4), 13–18.CrossRefGoogle Scholar
  4. 4.
    Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications,23(2), 201–220.CrossRefGoogle Scholar
  5. 5.
    Zhu, X., Shen, L., & Yum, T. S. P. (2007). Analysis of cognitive radio spectrum access with optimal channel reservation. IEEE Communications Letters,11(4), 304–306.CrossRefGoogle Scholar
  6. 6.
    Subhedar, M., & Birajdar, G. (2011). Spectrum sensing techniques in cognitive radio networks: a survey. International Journal of Next-Generation Networks,3(2), 37–51.CrossRefGoogle Scholar
  7. 7.
    Pandit, S., & Singh, G. (2017). Spectrum sensing in cognitive radio networks: potential challenges and future perspective. In Spectrum sharing in cognitive radio networks (pp. 35–75). Cham: Springer International Publishing.Google Scholar
  8. 8.
    Ali, A., & Hamouda, W. (2016). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communications Surveys & Tutorials,19(2), 1277–1304.CrossRefGoogle Scholar
  9. 9.
    Suliman, I., Lehtomäki, J., Bräysy, T., & Umebayashi, K. (2009). Analysis of cognitive radio networks with imperfect sensing. In 2009 IEEE 20th international symposium on personal, indoor and mobile radio communications (pp. 1616–1620). IEEE.Google Scholar
  10. 10.
    Altrad, O., Muhaidat, S., Al-Dweik, A., Shami, A., & Yoo, P. D. (2014). Opportunistic spectrum access in cognitive radio networks under imperfect spectrum sensing. IEEE Transactions on Vehicular Technology,63(2), 920–925.CrossRefGoogle Scholar
  11. 11.
    Aruna, T., & Suganthi, M. (2012). Variable power adaptive MIMO OFDM system under imperfect CSI for mobile ad hoc networks. Telecommunication Systems,50(1), 47–53.CrossRefGoogle Scholar
  12. 12.
    Jung, E., & Liu, X. (2008). Opportunistic spectrum access in heterogeneous user environments. In 3rd IEEE symposium on new frontiers in dynamic spectrum access networks, 2008. DySPAN 2008 (pp. 1–11). IEEE.Google Scholar
  13. 13.
    Yang, G., Wang, J., Luo, J., Wen, O. Y., Li, H., Li, Q., et al. (2016). Cooperative spectrum sensing in heterogeneous cognitive radio networks based on normalized energy detection. IEEE Transactions on Vehicular Technology,65(3), 1452–1463.CrossRefGoogle Scholar
  14. 14.
    Georgel, G. T., & Jayasheela, M. M. (2013). Performance of OFDM-based cognitive radio. International Journal of Engineering Science Invention, 2(4), 51–57.Google Scholar
  15. 15.
    Zhang, Y., & Leung, C. (2009). Resource allocation in an OFDM-based cognitive radio system. IEEE Transactions on Communications,57(7), 1928–1931.CrossRefGoogle Scholar
  16. 16.
    Awoyemi, B. S., Maharaj, B. T., & Alfa, A. S. (2017). Resource allocation in heterogeneous cooperative cognitive radio networks. International Journal of Communication Systems,30(11), e3247.CrossRefGoogle Scholar
  17. 17.
    Adian, M. G., Aghaeinia, H., & Norouzi, Y. (2016). Optimal resource allocation for opportunistic spectrum access in heterogeneous MIMO cognitive radio networks. Transactions on Emerging Telecommunications Technologies,27(1), 74–83.CrossRefGoogle Scholar
  18. 18.
    Awoyemi, B., Maharaj, B., & Alfa, A. (2017). Optimal resource allocation solutions for heterogeneous cognitive radio networks. Digital Communications and Networks,3(2), 129–139.CrossRefGoogle Scholar
  19. 19.
    Li, M., Hei, Y., & Qiu, Z. (2016). Joint sensing and power allocation in wideband cognitive radio networks. Telecommunication Systems,62(2), 375–386.CrossRefGoogle Scholar
  20. 20.
    Wang, S., Zhou, Z. H., Ge, M., & Wang, C. (2012). Resource allocation for heterogeneous multiuser OFDM-based cognitive radio networks with imperfect spectrum sensing. In INFOCOM, 2012 proceedings IEEE (pp. 2264-2272). IEEE.Google Scholar
  21. 21.
    Gür, G., & Alagöz, F. (2011). Green wireless communications via cognitive dimension: an overview. IEEE Network,25(2), 50–56.CrossRefGoogle Scholar
  22. 22.
    Chatterjee, S., Maity, S. P., & Acharya, T. (2014). Energy efficient cognitive radio system for joint spectrum sensing and data transmission. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,4(3), 292–300.CrossRefGoogle Scholar
  23. 23.
    Sun, X., & Wang, S. (2017). Energy‐efficient power allocation for cognitive radio networks with minimal rate requirements. International Journal of Communication Systems,30(2), e2953.CrossRefGoogle Scholar
  24. 24.
    Wang, S., Shi, W., & Wang, C. (2015). Energy-efficient resource management in OFDM-based cognitive radio networks under channel uncertainty. IEEE Transactions on Communications,63(9), 3092–3102.CrossRefGoogle Scholar
  25. 25.
    Wang, Q., Zou, Y., & Zhu, J. (2016). A multi-band power allocation scheme for green energy-efficient cognitive radio networks. In 2016 8th international conference on wireless communications & signal processing (WCSP) (pp. 1–5). IEEE.Google Scholar
  26. 26.
    Pei, Y., Liang, Y. C., Teh, K. C., & Li, K. H. (2011). Energy-efficient design of sequential channel sensing in cognitive radio networks: Optimal sensing strategy, power allocation, and sensing order. IEEE Journal on Selected Areas in Communications,29(8), 1648–1659.CrossRefGoogle Scholar
  27. 27.
    Kha, H. H., Vu, T. T., & Do-Hong, T. (2017). Energy-efficient transceiver designs for multiuser MIMO cognitive radio networks via interference alignment. Telecommunication Systems, 66(3), 1–12.CrossRefGoogle Scholar
  28. 28.
    Shi, Z., Teh, K. C., & Li, K. H. (2013). Energy-efficient joint design of sensing and transmission durations for protection of primary user in cognitive radio systems. IEEE Communications Letters,17(3), 565–568.CrossRefGoogle Scholar
  29. 29.
    Feng, L., Kuang, Y., Fu, X., & Dai, Z. (2016). Energy-efficient network cooperation joint resource configuration in multi-RAT heterogeneous cognitive radio networks. Electronics Letters,52(16), 1414–1416.CrossRefGoogle Scholar
  30. 30.
    Shi, Y., & Hou, Y. T. (2008). A distributed optimization algorithm for multi-hop cognitive radio networks. In INFOCOM 2008. The 27th conference on computer communications (pp. 1292–1300). IEEE.Google Scholar
  31. 31.
    Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  32. 32.
    Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science,13(7), 492–498.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Thiagarajar College of EngineeringMaduraiIndia

Personalised recommendations