Advertisement

Wireless Personal Communications

, Volume 109, Issue 3, pp 1605–1614 | Cite as

Substrate Integrated Waveguide Corrugated Horn Antenna

  • Zahra Gholipour
  • Javad Ahmadi-ShokouhEmail author
Article
  • 58 Downloads

Abstract

In this paper, a substrate integrated waveguide (SIW) H-plane horn antenna is proposed. We first optimize the antenna in size to obtain the maximum gain. The SIW horn antenna is then corrugated by adding some vias in order to further improve the beam pattern. We use half power beam width (HPBW) as a metric for this improvement. An optimization procedure is also employed to find the best places for the added vias. The horn antenna is implemented on FR4 substrate at 27 GHz frequency band for both with and without corrugation. The results show a good agreement between simulation and measurement. Moreover, it is shown that the SIW corrugated horn antenna reveals a pattern enhancement in terms of HPBW.

Keywords

Horn antenna Corrugated horn antenna Substrate integrated waveguide 

Notes

References

  1. 1.
    Wu, K., Deslandes, D., & Cassivi, Y. (2003). The substrate integrated circuits a new concept for high-frequency electronics and optoelectronics. In Proceedings on 6th international conference for telecommunications in modern satellite, cable and broadcasting service (pp. 3–10).Google Scholar
  2. 2.
    Yan, L., Hong, W., Hua, G., Jixin, C., Wu, K., & Jun, C. T. (2004). Simulation and experiment on SIW slot array. IEEE Microwave and Wireless Components, 14(9), 446–448.CrossRefGoogle Scholar
  3. 3.
    Wang, H., Fang, D.-G., Zhang, B., & Che, W.-Q. (2010). Dielectric loaded substrate integrated waveguide (SIW) H-plane horn antennas. IEEE Transactions Antenna and Propagation, 58(3), 64–647.Google Scholar
  4. 4.
    Tsao, H.-Y., Yang, D.-H., Cheng, J.-C., Fu, J.-S., & Lin, W.-P. (2012). W-band SIW H-plane horn antenna development. In Proceedings on 4th international high speed intelligent communication forum, (pp. 1–3).Google Scholar
  5. 5.
    Esquius-Morote, M., Fuchs, B., Zrcher, J.-F., & Mosig, J. R. (2013). A printed transition for matching improvement of SIW horn antennas. IEEE Transactions Antenna and Propagation, 61(4), 1923–1930.CrossRefGoogle Scholar
  6. 6.
    Esquius-Morote, M., Fuchs, B., Zrcher, J.-F., & Mosig, J. R. (2013). Novel thin and compact H-plane SIW horn antenna. IEEE Transactions Antenna and Propagation, 61(6), 2911–2920.CrossRefGoogle Scholar
  7. 7.
    Mentzer, C. A., Entzer, L., & Peters, J. R. (1976). Pattern analysis of corrugated horn antennas. IEEE Transactions Antenna and Propagation, 24(3), 304–309.CrossRefGoogle Scholar
  8. 8.
    Ding, Y., & Wu, K. (2007). Substrate integrated waveguide-to-microstrip transition in multilayer substrate. IEEE Transactions on Microwave Theory and Techniques, 55(12), 2839–2844.CrossRefGoogle Scholar
  9. 9.
    Balanis, C. A. (2005). Antenna theory, analysis and design. New York: Wiley.Google Scholar
  10. 10.
    Weile, D. S., & Michielssen, E. (1997). Genetic algorithm optimization applied to electromagnetics: A review. IEEE Transactions on Antennas and Propagation, 45(3), 343–353.CrossRefGoogle Scholar
  11. 11.
    Villegas, F. J., Cwik, T., Rahnat-Samii, Y., & Manteghi, M. (2004). A parallel electromagnetic genetic-algorithm optimization (EGO) application for patch antenna design. IEEE Transactions on Antennas and Propagation, 52(9), 2424–2435.CrossRefGoogle Scholar
  12. 12.
    Kerkhoff, A. J., & Ling, H. (2007). Design of a band-notched planar monopole antenna using genetic algorithm optimization. IEEE Transactions on Antennas and Propagation, 55(3), 604–610.CrossRefGoogle Scholar
  13. 13.
    Rutkowski, L. (2005). Computational intelligenece—methods and techniques. Berlin: Springer.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Telecommunications EngineeringUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations