Wireless Personal Communications

, Volume 109, Issue 2, pp 1071–1093 | Cite as

Effective Scheduling Policies to Optimize Radio Resources between NR-gNodeB and Device to Device Systems in 5G

  • Naveena A. PriyadharsiniEmail author
  • S. Tamil Selvi


Technology behind every communication systems, especially commercial applications requires periodic modifications to satisfy the subscriber’s desires. A bulk of handheld radio access devices are emerging in the market every day. Since radio resources are limited and expensive, Device to device communication underlying New Radio (NR-gNodeB) access network is encouraged in fifth generation (5G) systems. But such system may be a catalyst for interference. At present, the research hotspot is to find ideal solution for resource allocation and interference management. This paper emphasis the requirements of 5G system and its physical layer design. Further the intention is to mitigate interference in such system so that functionalities of scheduling schemes such as Greedy, Round Robin and Proportional fair algorithms are analyzed for efficient resource allocation. The simulation results explore that, the coded generalized frequency division multiplexing (GFDM) system results in higher transmission rate. Also, coded GFDM with proportional fair scheduler results in high throughput and reduced latency with no compromise in its fairness. In summary, the proposed scheme could be a wise choice for reliable communication in smart cities.


GFDM Greedy Round Robin Proportional fair algorithms Smart city 



  1. 1.
    Gao, C., Tang, J., Sheng, X., Zhang, W., Zou, S., & Guizani, M. (2016). Enabling green wireless networking with device to device links: A joint optimization approach. IEEE Transactions on Wireless Communication, 15(4), 2770–2778.CrossRefGoogle Scholar
  2. 2.
    Mathew, K. S., & Rappaport, T. S. (2016). 3D millimeter wave statistical channel model for 5G wireless system design. IEEE Transactions on Microwave Theory and Techniques, 64(7), 2207–2225.CrossRefGoogle Scholar
  3. 3.
    Thompson, J., Ge, X., & Wu, H. C. (2014). 5G Wireless communications systems: Prospects and challenges. IEEE Communication Magazine, 52(2), 62–64.CrossRefGoogle Scholar
  4. 4.
    Mahmoud, A. M, Albreem. (2015). 5G Wireless communication systems: Vision and challenges. In IEEE international conference on computer, communication and control technology (I4CT 2015) (pp. 493–497).Google Scholar
  5. 5.
    Tehrani, M. N., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Communications Magazine, 52(5), 86–92.CrossRefGoogle Scholar
  6. 6.
    Panwar, N., Sharma, S., & Singh, A. K. (2016). A survey on 5G: The next generation of mobile communication. Elsevier Journal on Physical Communication, 18(2), 64–84.CrossRefGoogle Scholar
  7. 7.
    Tin-Yu, W., & Chang, T. (2016). Interference reduction by millimeter wave technology for 5G based green communications. IEEE Access, 4, 10228–10234.CrossRefGoogle Scholar
  8. 8.
    Hilario-Tacuri, A., & Tamo, A. (2018). BER performance of mm-Wave based systems in rainfall scenarios. In IEEE XXV international conference on electronics, electrical engineering and computing (INTERCON) (pp. 1–4).Google Scholar
  9. 9.
    Farhang, A., Marchetti, N., & Linda, E. Doyle. (2016). Low-complexity modem design for GFDM. IEEE Transactions on Signal Processing, 64(6), 1507–1517.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hamiti, E., & Sallahu, F. (2015). Spectrum comparison between GFDM, OFDM and GFDM behavior in a noise and fading channel. International Journal of Electrical and computer Engineering Systems, 6(2), 39–43.Google Scholar
  11. 11.
    Fettweis, G. P., Krondorf, M., & Bittner, S. (2009). GFDM—Generalized frequency division multiplexing. In Proceedings IEEE vehicular technology conference (VTC Spring 2009) (pp. 1–4).Google Scholar
  12. 12.
    Kim, J., Karim, N. A., & Cho, S. (2017). An interference mitigation scheme of device-to-device communications for sensor networks underlying LTE-A. Journal on Sensors, 17(5), 1088–1105.CrossRefGoogle Scholar
  13. 13.
    Liang, L., Li, G. Y., & Xu, W. (2017). Resource allocation for D2D-enabled vehicular communications. IEEE Transactions on Communications, 65(7), 3186–3197.CrossRefGoogle Scholar
  14. 14.
    Michailow, N., Matthé, M., Gaspar, I. S., Caldevilla, A. N., Mendes, L. L., Festag, A., et al. (2014). Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Transactions on Communications, 62(9), 3045–3061.CrossRefGoogle Scholar
  15. 15.
    Bechira, N., Nasreddine, M., Mahmoud, A., Walid, H., & Sofien, M. (2014). Novel scheduling algorithm for 3GPP downlink LTE cellular network. Procedia Computer Science, 40, 116–122.CrossRefGoogle Scholar
  16. 16.
    Musleh, S., Ismail, M., & Nordin, R. (2015). Effect of average-throughput window size on proportional fair scheduling for radio resources in LTE—a networks. Journal of Theoretical and Applied Information Technology, 80(1), 179.Google Scholar
  17. 17.
    Nam, W., Bai, D., Lee, J., & Kang, I. (2014). Advanced interference management for 5G cellular networks. IEEE Communication Magazine, 52(5), 52–60.CrossRefGoogle Scholar
  18. 18.
    Barayan, Y., & Kostanic, I. (2013). Performance evaluation of proportional fairness scheduling in LTE. In Proceedings of the world congress on engineering and computer science (Vol. 2, pp 712–717).Google Scholar
  19. 19.
    Gaspar, I., Michailow, N., Navarro, A., Ohlmer, E., Krone, S., & Fettweis, G. (2013). Low complexity GFDM receiver based on sparse frequency domain processing. In IEEE vehicular technology conference (VTC Spring 2013) Proceedings (pp. 1–6).Google Scholar
  20. 20.
    Wei, P., Xia, X. G., Xiao, Y., & Li, S. (2016). Fast DGT based receivers for GFDM in broad band channels. IEEE Transactions on Communications, 4(10), 4331–4345.Google Scholar
  21. 21.
    Bang, H. J., Ekman, T., & Gesbert, D. (2008). Channel predictive proportional fair scheduling. IEEE Transactions on Wireless Communications, 7(2), 482–487.CrossRefGoogle Scholar
  22. 22.
    Mollanoori, M & Ghaderi, M. (2011). Fair and efficient scheduling in wireless networks with successive interference cancellation. In IEEE conference on wireless communication and networking (IEEE WCNC 2011 - MAC) (pp. 221–226).Google Scholar
  23. 23.
    Salih, M., Gismalla, M., & Eltahir, I. K. (2015). Interference reduction between device to device (D2D) communication underlying cellular networks. International Journal of Scientific & Engineering Research, 6(11), 410–414.Google Scholar
  24. 24.
    Odhah, N. A., Dessouky, M. I., Al-Hanafy, W. E., & Abd El-Samie, F. E. (2012). Low complexity greedy power allocation algorithm for proportional resource allocation in multi-user OFDM systems. Journal of Telecommunications and Information technology. Scholar
  25. 25.
    Wang, J., Huang, Y., Jin, S., Schober, R., You, X., & Zhao, C. (2018). Resource management for device-to-device communication: A physical layer security perspective. IEEE Journal on Selected Areas in Communications, 36(4), 946–960.CrossRefGoogle Scholar
  26. 26.
    Chen, Y., Ai, B., Niu, Y., Guan, K., & Han, Z. (2018). Resource allocation for device-to-device communications underlaying heterogeneous cellular networks using coalitional games. IEEE Transactions on Wireless Communications, 17(6), 4163–4176.CrossRefGoogle Scholar
  27. 27.
    Huang, J., Xing, C.-C., Qian, Y., & Haas, Z. J. (2018). Resource Allocation for multicell device-to-device communications underlaying 5G networks: A game-theoretic mechanism with incomplete information. IEEE Transactions on Vehicular Technology, 67(3), 2557–2570.CrossRefGoogle Scholar
  28. 28.
    Zhong, J., Chen, G., Mao, J., Dang, S., & Xiao, P. (2018). Iterative frequency domain equalization for MIMO-GFDM systems. IEEE Access, 6, 19386–19395.CrossRefGoogle Scholar
  29. 29.
    Mahmood, N. H., Pedersen, K. I., & Mogensen, P. (2017). Interference aware inter-cell rank coordination for 5G systems. IEEE Access, 5, 2339–2350.CrossRefGoogle Scholar
  30. 30.
  31. 31.
    AlAmmouri, A., Andrews, J. G., & Baccelli, F. (2018). SINR and throughput of dense cellular networks with stretched exponential path loss. IEEE Transactions on Wireless Communications, 17(2), 1147–1160.CrossRefGoogle Scholar
  32. 32.
    Khan, A. H., & Roy, K. C. (2013). Comparison of turbo codes and low density parity check codes. IOSR Journal of Electronics and Communication Engineering, 6(6), 11–18.CrossRefGoogle Scholar
  33. 33.
    Guo, B., Sun, S., & Gao, Q. (2014). Interference management for D2D communications underlying cellular networks at cell edge. In International conference on wireless and mobile communications (ICWMC 2014) (pp. 118 – 123).Google Scholar
  34. 34.
    Zhang, D., Mendes, L. L., Mathe, M., Gaspar, I. S., Michailow, N., & Gerhard, P. F. (2016). Expectation propagation for near-optimum detection of MIMO-GFDM signals. IEEE Transactions on Wireless Communication, 15(2), 1045–1062.CrossRefGoogle Scholar
  35. 35.
    Zaki, F. W., Kishk, S., & Almofari, N. H. (2017). Distributed resource allocation for D2D communication networks using auction 2017. In 34th National radio science conference proceedings (2017) (pp. 284–293).Google Scholar
  36. 36.
    Frank, H. (2016). Interference mitigation for femto deployment in next generation mobile networks. In Proceedings of the international multi conference of engineers and computer scientists (IMECS 2016) (pp. 2).Google Scholar
  37. 37.
    Zhang, H., Liao, Y., & Song, L. (2017). D2D-U: Device-to-device communications in unlicensed bands for 5G system. IEEE Transactions on Wireless Communications, 16(6), 3507–3519.CrossRefGoogle Scholar
  38. 38.
    Matthe, M., Mendes, L. L., Michailow, N., Zhang, D., & Fettweis, G. (2015). Widely linear estimation for space-time-coded GFDM in low-latency applications. IEEE Transactions on Communications, 63(11), 4501–4509.CrossRefGoogle Scholar
  39. 39.
    Shuo, Yu., Ejaz, W., Guan, L., & Anpalaga, A. (2017). Resource allocation schemes in D2D communications: Overview, classification, and challenges. SPRINGER Journal on Wireless Personal Communication, 96(1), 303–322.CrossRefGoogle Scholar
  40. 40.
    Diamantoulakis, P. D., Pappi, K. N., Ding, Z., & Karagiannidis, G. K. (2016). Wireless Powered Communications with Non-Orthogonal Multiple Access. IEEE Transactions on Wireless Communications, 15(12), 8422–8436.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Arunachala College of Engineering for WomenKanyakumari District, NagercoilIndia
  2. 2.National Engineering CollegeKovilpattiIndia

Personalised recommendations