Advertisement

Wireless Personal Communications

, Volume 109, Issue 2, pp 909–944 | Cite as

Performance Analysis of Relay Selection with Enhanced Dynamic Decode-and-Forward and Network Coding in Two-Way Relay Channels

  • Wei-Cheng LiuEmail author
Article
  • 14 Downloads

Abstract

Relay selection (RS), enhanced dynamic decode-and-forward (EDDF), and network coding (NC) have been proven to effectively improve the performance of cooperative communications systems. This motivates us to combine these three techniques to see how they can improve the performance of cooperative communications systems. In this study, we adopt the RS protocol proposed by Bletsas, Khisti, Reed and Lippman in 2006. The protocol features an EDDF and NC system for two-hop two-way multirelay networks. All nodes are single-input single-output and half-duplex (i.e., they cannot transmit and receive data simultaneously). The outage probability and its asymptotic behavior at a high SNR, diversity gain, coding gain at a high SNR, multiplexing gain of the sum rate, and spectrum efficiency of the RS-DDF&NC and RS-EDDF&NC schemes were analyzed. In this paper, we present comparisons of the outage probability in various scenarios under the Rayleigh fading channel. Our results demonstrate that the RS protocol with the EDDF and NC scheme exhibits optimal performance regarding outage probability based on the considered DF relay scheme if there exist sufficient relays. In addition, the performance loss is large if a relay is selected randomly. This demonstrates the importance of RS strategies.

Keywords

Enhanced dynamic decode-and-forward (EDDF) Network coding (NC) Relay selection (RS) Two-way relay channels 

Notes

Acknowledgements

The authors thank Professor Chiu-Chu Melissa Liu for providing the proof of Lemma 1. This work was supported by the National Science Council, Taiwan, under contract NSC 101-2221-E-194-037.

References

  1. 1.
    Sendonaris, A., Erkip, E., & Aazhang, B. (1998). Increasing uplink capacity via user cooperation diversity. In Proceedings IEEE international symposium on information theory, Cambridge, MA (p. 156) .Google Scholar
  2. 2.
    Zheng, L., & Tse, D. N. C. (2003). Diversity and multiplexing: a fundamental tradeoff in multiple antenna channels. IEEE Transactions on Information Theory, 49, 1073–1096.CrossRefGoogle Scholar
  3. 3.
    Laneman, J., Tse, D., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50, 3062–3080.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Laneman, J., & Wornell, G. W. (2003). Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 49, 2415–2425.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Azarian, K., El-Gamal, H., & Schniter, P. (2005). On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels. IEEE Transactions on Information Theory, 51, 4152–4172.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Prasad, N., & Varanasi, M. K. (2010). High performance static and dynamic cooperative communication protocols for the half duplex fading relay channel. IEEE Transactions on Wireless Communications, 9, 328–337.CrossRefGoogle Scholar
  7. 7.
    Wang, L.-C., Liu, W.-C., & Wu, S.-H. (2011). Analysis of diversity-multiplexing tradeoff in a cooperative network coding system. IEEE Transactions on Communications, 59, 2373–2376.CrossRefGoogle Scholar
  8. 8.
    Fertl, P., Hottinen, A., & Matz, G. (2008) Perturbation-based distributed beamforming for wireless relay networks. In Proceedings IEEE global communications conference, New Orleans, LA (pp. 1–5).Google Scholar
  9. 9.
    Bletsas, A., Khisti, A., Reed, D., & Lippman, A. (2006). A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas of Communication, 24, 659–672.CrossRefGoogle Scholar
  10. 10.
    Han, Z., Himsoon, T., Siriwongpairat, W., & Liu, K. (2009). Resource allocation for multiuser cooperative OFDM networks: Who helps whom and how to cooperate. IEEE Transactions on Vehicular Technology, 58, 2378–2391.CrossRefGoogle Scholar
  11. 11.
    Muñoz, O., Vidal, J., & Agustin, A. (2005) Non-regenerative MIMO relaying with channel state information [cellular example]. In Proceedings IEEE international conference accoustic, speech and signal processing, Philadelphia, PA (pp. 361–364).Google Scholar
  12. 12.
    Jing, Y., & Jafarkhani, H. (2009). Single and multiple relay selection schemes and their achievable diversity orders. IEEE Transactions on Wireless Communications, 8, 1414–1423.CrossRefGoogle Scholar
  13. 13.
    Krikidis, I., Thompson, J., Mclaughlin, S., & Goertz, N. (2008). Amplify-and-forward with partial relay selection. IEEE Communications Letters, 12(4), 235–237.  https://doi.org/10.1109/LCOMM.2008.071987.CrossRefGoogle Scholar
  14. 14.
    Madan, R., Mehta, N.B., Molisch, A. F., & Zhang, J. (2006). Cth17-2: Energy-efficient cooperative relaying over fading channels with simple relay selection. In IEEE Globecom 2006 (pp. 1–6).  https://doi.org/10.1109/GLOCOM.2006.130.
  15. 15.
    Ibrahim, A. S., Sadek, A. K., Su, W., & Liu, K. J. R. (2008). Cooperative communications with relay-selection: when to cooperate and whom to cooperate with? IEEE Transactions on Wireless Communications, 7(7), 2814–2827.  https://doi.org/10.1109/TWC.2008.070176.CrossRefGoogle Scholar
  16. 16.
    Bel, A., Vicario, G. S.-G. J. L., & Seco-Granados, G. The benefits of relay selection in WiMAX networks, ICT-MobileSummit08.Google Scholar
  17. 17.
    Fan, L., Lei, X., Yang, N., Duong, T. Q., & Karagiannidis, G. K. (2017). Secrecy cooperative networks with outdated relay selection over correlated fading channels. IEEE Transactions on Vehicular Technology, 66(8), 7599–7603.  https://doi.org/10.1109/TVT.2017.2669240.CrossRefGoogle Scholar
  18. 18.
    Li, M., Yin, H., Huang, Y., & Wang, Y. (2018). Impact of correlated fading channels on cognitive relay networks with generalized relay selection. IEEE Access, 6, 6040–6047.  https://doi.org/10.1109/ACCESS.2017.2762348.CrossRefGoogle Scholar
  19. 19.
    Cai, G., Fang, Y., Han, G., Xu, J., & Chen, G. (2018). Design and analysis of relay-selection strategies for two-way relay network-coded DCSK systems. IEEE Transactions on Vehicular Technology, 67(2), 1258–1271.  https://doi.org/10.1109/TVT.2017.2751754.CrossRefGoogle Scholar
  20. 20.
    Ahlswede, R., Cai, N., Li, S. Y. R., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory, 46(4), 1204–1216.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Prasad, N., & Varanasi, M. K. (2004). Diversity and multiplexing tradeoff bounds for cooperative diversity schemes. In Proceedings IEEE international symposium information theory, Chicago, IL (p. 271).Google Scholar
  22. 22.
    Li, Y., Louie, R. H. Y., & Vucetic, B. (2010). Relay selection with network coding in two-way relay channels. IEEE Transactions on Vehicular Technology, 59, 4489–4499.CrossRefGoogle Scholar
  23. 23.
    Bletsas, A., Shin, H., Win, M., Lippman, A. (2006). Cooperative diversity with opportunistic relaying. In Proceedings IEEE wireless communications and networking conference, Las Vegas, NV (pp 1034–1039).Google Scholar
  24. 24.
    Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.  https://doi.org/10.1109/TWC.2010.120310.090852.CrossRefGoogle Scholar
  25. 25.
    El-Moutaouakkil, Z., Tourki, K., Qaraqe, K. A., & Saoudi, S. (2012). Exact outage probability analysis for relay-aided underlay cognitive communications. In 2012 IEEE vehicular technology conference (VTC fall) (pp. 1–5).  https://doi.org/10.1109/VTCFall.2012.6399044.
  26. 26.
    Bao, V. N. Q., & Tran, D. T. (2012) Performance analysis of cognitive underlay DF relay protocol with \(K\)th best partial relay selection. In The 2012 international conference on advanced technologies for communications (pp. 130–135).  https://doi.org/10.1109/ATC.2012.6404245.
  27. 27.
    Liu, W.-C., Chen, Y.-N. (2012) . Dynamic decode and forward with network coding. In 2012 75th IEEE Vehicular technology conference (VTC Spring) (pp. 1–5).Google Scholar
  28. 28.
    Liu, W.-C., & Shih, C.-H. (2015). The performance of systems featuring dynamic decode-and-forward and network coding. Wireless Personal Communication, 80(1), 521–541.  https://doi.org/10.1007/s11277-014-2024-4.CrossRefGoogle Scholar
  29. 29.
    Wikipedia, Exclusive or—Wikipedia, the free encyclopedia, (Online; Accessed 19-Sept-2016) (2016). https://en.wikipedia.org/w/index.php?title=Exclusive_or&oldid=737876378.
  30. 30.
    Wikipedia, Floor and ceiling functions—Wikipedia, the free encyclopedia, (Online; Accessed 19-Sept.-2016) (2016). https://en.wikipedia.org/w/index.php?title=Floor_and_ceiling_functions&oldid=738350457.
  31. 31.
    Rappaport, T. S. (1996). Wireless communications: Principles and practice (2nd ed.). Upper Saddle River: Prentice Hall.zbMATHGoogle Scholar
  32. 32.
    Wikipedia, Gamma function—Wikipedia, the free encyclopedia, (Online; accessed 1-September-2016) (2016). https://en.wikipedia.org/w/index.php?title=Gamma_function&oldid=736970096.
  33. 33.
    Wikipedia, Hypergeometric function—Wikipedia, the free encyclopedia, (Online; accessed 1-Sept.-2016) (2016). https://en.wikipedia.org/w/index.php?title=Hypergeometric_function&oldid=731322890.
  34. 34.
    Wikipedia, Riemann sum—Wikipedia, the free encyclopedia, (Online; accessed 5-July-2016) (2016). https://en.wikipedia.org/w/index.php?title=Riemann_sum&oldid=717589707.
  35. 35.
    Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected areas in Communications, 16(8), 1451–1458.CrossRefGoogle Scholar
  36. 36.
    Forney, G. D, Jr., & Ungerboeck, G. (1998). Modulation and coding for linear Gaussian channels. IEEE Transactions on Information Theory, 44, 2384–2415.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Wikipedia, Power series — Wikipedia, the free encyclopedia, (Online; accessed 21-Oct.-2016) (2016). https://en.wikipedia.org/w/index.php?title=Power_series&oldid=743563194.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Communications EngineeringNational Chung Cheng UniversityChia-YiTaiwan, ROC

Personalised recommendations