Wireless Personal Communications

, Volume 108, Issue 4, pp 2517–2540 | Cite as

Nature Inspired Optimization Algorithms Based Adaptation of Transmission Parameters in CR Based IoTs

  • Avneet KaurEmail author
  • Surbhi Sharma
  • Amit Mishra


Cognitive radio (CR) is a promising technology to overcome the challenge of additional spectrum requirement posed by internet of things (IoT) supported applications. This paper brings out the comparative performance analysis of different optimization techniques for adapting the transmission parameters in five distinct transmission scenarios for a multicarrier based CR-IoT network. Parameter adaptation problem is rather complex to be solved for a multicarrier system with large number of transmission variables. Inspired by the efficient exploration and exploitation abilities of recently proposed nature inspired meta-heuristic optimization algorithms, the application of these techniques has been investigated for solving the proposed multiobjective optimization problem.


Cognitive radio Cognitive decision engine Internet of things Multicarrier system Nature inspired metaheuristics 



  1. 1.
    Khan, A. A., Rehmani, M. H., & Rachedi, A. (2017). Cognitive-radio-based internet of things: Applications, architectures, spectrum related functionalities, and future research directions. IEEE Wireless Communications, 24, 17–25.CrossRefGoogle Scholar
  2. 2.
    Verma, G., & Sahu, O. P. (2017). Throughput maximization of cognitive radio under the optimization of sensing duration. Wireless Personal Communications, 97(1), 1251–1266.CrossRefGoogle Scholar
  3. 3.
    Rawat, P., Singh, K. D., & Bonnin, J. M. (2016). Cognitive radio for M2M and internet of things: A survey. Computer Communications, 94, 1–29.CrossRefGoogle Scholar
  4. 4.
    Rondeau, T. W., & Bostian, C. W. (2009). Artificial intelligence in wireless communications. Noorwood: Artech House.zbMATHGoogle Scholar
  5. 5.
    Chen, J.-C., & Wen, C.-K. (2016). A novel cognitive radio adaptation for wireless multicarrier systems. IEEE Communication Letters, 14(7), 629–631.CrossRefGoogle Scholar
  6. 6.
    Zhao, N., Li, S., & Wu, Z. (2012). Cognitive radio engine design based on ant colony optimization. Wireless Personal Communications, 65(1), 15–24.CrossRefGoogle Scholar
  7. 7.
    Pradhan, P. M., & Panda, G. (2014). Comparative performance analysis of evolutionary algorithm based parameter optimization in cognitive radio engine: A survey. Adhoc Networks, 17, 129–146.CrossRefGoogle Scholar
  8. 8.
    Salem, T. M., Mageid, S. A., Abd. El Kader, S. M., & Zaki, M. (2015). A quality of service distributed optimizer for cognitive radio sensor networks. Pervasive and Mobile Computing, 22, 71–89.CrossRefGoogle Scholar
  9. 9.
    Kaur, K., Rattan, M., & Patterh, M. S. (2014). Biogeography-based optimisation of cognitive radio system. International Journal of Electronics, 101(1), 24–36.CrossRefGoogle Scholar
  10. 10.
    Garg, H. (2016). A hybrid PSO-GA algorithm for constrained optimization problems. Applied Mathematics and Computation, 274, 292–305.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ahuja, K., Singh, B., & Khanna, R. (2014). Particle swarm optimization based network selection in heterogeneous wireless environment. Optik, 125(1), 214–219.CrossRefGoogle Scholar
  12. 12.
    Kaur, A., Sharma, S., & Mishra, A. (2017). Sensing period adaptation for multi-objective optimization in cognitive radio using Jaya algorithm. IET Electronics Letters, 53(19), 1335–1336.CrossRefGoogle Scholar
  13. 13.
    Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98.CrossRefGoogle Scholar
  14. 14.
    Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRefGoogle Scholar
  15. 15.
    Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature- inspired heuristic paradigm. Knowledge Based Systems, 89, 228–249.CrossRefGoogle Scholar
  16. 16.
    Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.CrossRefGoogle Scholar
  17. 17.
    Rao, R. V., & Saroj, A. (2016). Economic optimization of shell-and-tube heat exchanger using Jaya algorithm with maintenance consideration. Applied Thermal Engineering, 116, 473–487.CrossRefGoogle Scholar
  18. 18.
    Paraskevopoulos, A., Dallas, P. I., Siakavara, K., & Goudos, S. K. (2017). Cognitive radio engine design for IoT using real-coded biogeography-based optimization and fuzzy decision making. Wireless Personal Communications, 97, 1813–1833.CrossRefGoogle Scholar
  19. 19.
    Dhillon, J. S., Parti, S. C., & Kothari, D. P. (1993). Stochastic economic emission load dispatch. Electric Power Systems Research, 26, 179–186.CrossRefGoogle Scholar
  20. 20.
    Kumar, A., Singhal, S., Naik, G., Kansabanik, N., & Karandikar, A. (2014). TV white space asssessment in India and its potential for rural broadband usage, CEP: (Dynamic) Spectrum management, IIT Bombay.Google Scholar
  21. 21.
    García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithm. Swarm and Evolutionary Computation, 1, 3–18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations