Wireless Personal Communications

, Volume 108, Issue 2, pp 785–809 | Cite as

Performance Analysis and FPGA Prototype of Variable Rate GO-OFDMA Baseband Transmission Scheme

  • Akash AgarwalEmail author
  • Vibhooti Kumar Sinha
  • Rakesh Palisetty
  • Preetam Kumar
  • Kailash Chandra Ray
  • Kamlesh Kumar
  • Tulika Pandey


To fulfill the increasing demand for high speed Variable Bit Rate (VBR) broadcast services with reliable Quality of Service, Group Orthogonal-Orthogonal Frequency Division Multiple Access (GO-OFDMA) and Variable Spreading Length Multicarrier Code Division Multiple Access transmission schemes are examined over Land Mobile Satellite (LMS) channel. This paper presents the performance analysis of aforementioned multiple access transmission schemes in terms of computation complexity, Peak-to-Average-Power-Ratio (PAPR) and the average Bit Error Rate (BER) performance over L-band LMS channel. Minimum Mean Square Equalizer (MMSE) equalizer is employed at the receiver. Based on the simulation results, GO-OFDMA stems out to be a better variable rate transmission scheme in respect of both PAPR and BER performance for higher data rate users. Further, GO-OFDMA based VBR transmitter and MMSE equalizer are prototyped on commercially available virtex5 xc5vlx110t–1ff1136 Field Programmable Gate Array (FPGA) device. A block-by-block analysis of hardware resource utilization and power dissipation for the VBR GO-OFDMA transmitter is provided. The achieved baud rate for VBR GO-OFDMA transmission scheme on FPGA is 103.874 Msps. Thus, GO-OFDMA transmission scheme could be appropriate for VBR communication over LMS channel.


FPGA prototype LMS channel MMSE Multiple access PAPR Variable rate 



This study was funded by Ministry of Electronics and Information Technology (MeitY) under the Visvesvaraya PhD Scheme.


  1. 1.
    Evans, B., Werner, M., Lutz, E., Bousquet, M., Corazza, G. E., & Maral, G. (2005). Integration of satellite and terrestrial systems in future multimedia communications. Wireless Communications, IEEE, 12(5), 72–80.CrossRefGoogle Scholar
  2. 2.
    Fazel, Khaled, & Kaiser, Stefan. (2008). Multi-carrier and spread spectrum systems: From OFDM and MC-CDMA to LTE and WiMAX. Wiley, 58(3), 758–766.Google Scholar
  3. 3.
    Hara, S., & Prasad, R. (1997). Overview of multicarrier CDMA. Communications Magazine, IEEE, 35(12), 126–133.CrossRefGoogle Scholar
  4. 4.
    Cai, Xiaodong, Zhou, Shengli, & Giannakis, G. B. (2002). Group-orthogonal multi-carrier CDMA. Proceedings on MILCOM 2002, 1, 596–601.Google Scholar
  5. 5.
    Xu, Yin Lin, Weng, Jianfeng, & Le-Ngoc, Tho. (2004). Group-orthogonal OFDMA in fast time-varying frequency-selective fading environments. Conference on Vehicular Technology, 1, 488–492.Google Scholar
  6. 6.
    Po-Wei, Fu, & Chen, Kwang-Cheng. (2003). Multi-rate multi-carrier CDMA with multiuser detection for wireless multimedia communications. IEEE Conference on Wireless Communications and Networking, 1, 385–390.Google Scholar
  7. 7.
    D’Orazio, L., Panizza, M., & Sacchi, C. (2009). A multi-user multi-rate OFDMA transmission system based on orthogonal subcarrier grouping. In IEEE international conference on communications workshops, ICC workshops (pp. 1–5).Google Scholar
  8. 8.
    Agarwal, A., Mukati, V., & Kumar, P. (2015). Performance analysis of variable rate multicarrier transmission schemes over LMS channel. In IEEE international conference on electronics, computing and communication technologies (CONECCT) (pp. 1–6).Google Scholar
  9. 9.
    Iqbal, Z., Nooshabadi, S., & Lee, Heung-No. (2012). Analysis and design of coding and interleaving in a MIMO-OFDM communication system. IEEE Transactions on Consumer Electronics, 58(3), 758–766.CrossRefGoogle Scholar
  10. 10.
    Kumutha, D., & Amutha Prabha, N. (2017). Hybrid STBC-PTS with enhanced artificial bee colony algorithm for PAPR reduction in MIMO-OFDM system. Journal of Ambient Intelligence and Humanized Computing, 1–17.Google Scholar
  11. 11.
    Yu, Heejung, Kim, Myung-Soon, Choi, Eun-Young, Jeon, Taehyun, & Lee, Sok-Kyu. (2005). Design and prototype development of MIMO-OFDM for next generation wireless LAN. IEEE Transactions on Consumer Electronics, 51(4), 1134–1142.CrossRefGoogle Scholar
  12. 12.
    Mohamed, M. A. (2013). FPGA synthesis of VHDL OFDM system. Wireless Personal Communications, 70(4), 1885–1909.CrossRefGoogle Scholar
  13. 13.
    Ebeling, C., Fisher, C., Guanbin, Xing, Manyuan, Shen, & Hui, Liu. (2004). Implementing an OFDM receiver on the RaPiD reconfigurable architecture. IEEE Transactions on Computers, 53(11), 1436–1448.CrossRefGoogle Scholar
  14. 14.
    Ana Cinta, Oria, Vicente, Baena, Joaquin, Granado, Jorge, Chavez, Patricio, Lopez, Jose, Garcia, et al. (2012). Reduced complexity ICI cancellation scheme for OFDM DVB-SH receivers. Microprocessors and Microsystems, Elsevier, 36(5), 393–401.CrossRefGoogle Scholar
  15. 15.
    Wang, R., Cai, J., Yu, X., & Jiang, J. (2017). Temporal-correlation-based compressive channel estimation for universal filtered multicarrier system over fast-fading channels. Journal of Ambient Intelligence and Humanized Computing, 10(5), 1681–1692.CrossRefGoogle Scholar
  16. 16.
    European Broadcasting Union Std. ETSI TS 102 584 V1.1.1 Digital Video Broadcasting (DVB); DVB-SH Implementation Guidelines, 2008–2012.Google Scholar
  17. 17.
    Chini, Paolo, Giambene, Giovanni, & Kota, Sastri. (2010). A survey on mobile satellite systems. International Journal of Satellite Communications and Networking, 28(1), 29–57.Google Scholar
  18. 18.
    Abdi, A., Lau, W. C., Alouini, M.-S., & Kaveh, Mostafa. (2003). A new simple model for land mobile satellite channels: First- and second-order statistics. IEEE Transactions on Wireless Communications, 2(3), 519–528.CrossRefGoogle Scholar
  19. 19.
    Scalise, S., Ernst, H., & Harles, G. (2008). Measurement and modeling of the land mobile satellite channel at Ku-band. IEEE Transactions on Vehicular Technology, 57(2), 693–703.CrossRefGoogle Scholar
  20. 20.
    Corazza, G. E., & Vatalaro, F. (1994). A statistical model for land mobile satellite channels and its application to nongeostationary orbit systems. IEEE Transactions on Vehicular Technology, 43(3), 738–742.CrossRefGoogle Scholar
  21. 21.
    Loo, C. (1985). A statistical model for a land mobile satellite link. IEEE Transactions on Vehicular Technology, 34(3), 122–127.CrossRefGoogle Scholar
  22. 22.
    Kourogiorgas, C., Kvicera, M., Skraparlis, D., Korinek, T., Sakarellos, V. K., Panagopoulos, A. D., et al. (2014). Modeling of first-order statistics of the MIMO dual polarized channel at 2 GHz for land mobile satellite systems under tree shadowing. IEEE Transactions on Antennas and Propagation, 62(10), 5410–5415.CrossRefzbMATHGoogle Scholar
  23. 23.
    Loo, C., & Butterworth, J. S. (1998). Land mobile satellite channel measurements and modeling. Proceedings of the IEEE, 86(7), 1442–1463.CrossRefGoogle Scholar
  24. 24.
    Dinan, E. H., & Jabbari, B. (1998). Spreading codes for direct sequence CDMA and wideband CDMA cellular networks. Communications Magazine, IEEE, 36(9), 48–54.CrossRefGoogle Scholar
  25. 25.
    Pearson, J. (2009). Computation of hypergeometric functions. Oxford: Worcester College, University of Oxford.Google Scholar
  26. 26.
    Lingzhi, Cao, & Beaulieu, N. C. (2005). A simple efficient method for generating independent Nakagami-m fading samples. IEEE Conference on Vehicular Technology Conference (VTC), 1, 44–47.Google Scholar
  27. 27.
    Yacoub, M. D., Fraidenraich, G., & Santos Filho, J. C. S. (2005). Nakagami-m phase-envelope joint distribution. Electronics Letters, 41(5), 259–261.CrossRefGoogle Scholar
  28. 28.
    Sigman, K. (2016). The acceptance rejection method with applications. Available from: Accessed 7 Aug 2016.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of Technology PatnaBihtaIndia
  2. 2.Ministry of Electronics and Information Technology (MeitY), Government of IndiaNew DelhiIndia

Personalised recommendations