Advertisement

Wireless Personal Communications

, Volume 108, Issue 2, pp 751–768 | Cite as

High-Performance GLR Detector for Moving Target Detection in OFDM Radar-Based Vehicular Networks

  • Shaghayegh Kafshgari
  • Reza Mohseni
  • Sadegh SamadiEmail author
  • Mohammad Reza KhosraviEmail author
Article

Abstract

Nowadays, orthogonal frequency division multiplexing (OFDM) radars have been used in many applications such as target detection and recognition in vehicular networks and surveillance systems, according to their frequency diversity property. The model of the received signal in an OFDM radar based on target’s parameters has a non-linear form with respect to unknown velocity and scattering coefficients, so there is no possibility of achieving a closed form solution for Maximum Likelihood Estimation of the unknown parameters and so the Neyman–Pearson detector. Therefore, in all published works, the generalized likelihood ratio (GLR) detector is obtained for the target with known velocity, or in case of simultaneous unknown velocity and scattering coefficients, only a wide two-dimensional grid search over all possible values of the unknown parameters is considered to maximize the Likelihood ratio. In this paper, a new method is proposed for simultaneous estimations of target velocity and scattering coefficients using a coordinate descent approach, which reduces the above nonlinear problem to two linear problems, and makes the implementation of GLR detector efficient. The simulation results confirm the efficiency of the proposed method.

Keywords

OFDM radar Generalized likelihood ratio Maximum likelihood estimation Coordinate descent algorithm 

Notes

References

  1. 1.
    Lee, K.-C., Huang, C.-W., & Fang, M.-C. (2008). Radar target recognition by projected features of frequency diversity RCS. Progress in Electromagnetics Research, PIER, 81, 121–133.CrossRefGoogle Scholar
  2. 2.
    Skolnik, M. (2001). Introduction to radar system (3rd ed.). New York, NY: McGraw-Hall.Google Scholar
  3. 3.
    Skolnik, M. (1985). Fifty years of radar. Proceedings of the IEEE, 73(2), 182–197.CrossRefGoogle Scholar
  4. 4.
    Mohseni, R., Sheikhi, A., & Masnadi Shirazi, M. A. (2010). Multicarrier constant envelope OFDM signal design for radar applications. International Journal of Electronics and Communications (AEU), 64(11), 999–1008.CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Mohseni, R., Sheikhi, A., & Masnadi-shirazi, M. A. (2009) Efficient compression of wavelet packet OFDM radar signals. In Proceedings of the 2009 IET radar conference, China (Vol. 1, pp. 708–712).Google Scholar
  7. 7.
    Mohseni, R., Sheikhi, A., & Masnadi-shirazi, M. A. (2008). A new approach to compress multi-carrier phase coded signals. In Proceedings of the 2008 IEEE radar conference, Rome, Italy (pp. 442–447).Google Scholar
  8. 8.
    Mohseni, R., Sheikhi, A., & Masnadi-shirazi, M. A. (2008). Constant envelope OFDM signals for radar applications. In Proceedings of the 2008 IEEE radar conference, Rome, Italy (pp. 453–457).Google Scholar
  9. 9.
    Mohseni, R., Sheikhi, A., & Masnadi-shirazi, M. A. (2008). Wavelet packet based OFDM radar signals. In Proceedings of radar 2008 Conference, Adelaide, Australia (pp. 579–584).Google Scholar
  10. 10.
    Mohseni, R., Sheikhi, A., & Masnadi-shirazi, M. A. (2008). Compression of multi-carrier phase coded radar signals with low sampling rate. In Proceedings of radar 2008 conference, Adelaide, Australia (pp. 753–756).Google Scholar
  11. 11.
    Gahramani, M., Mohseni, R., Sheikhi, A., & Saeimanesh, F. (2008). Optimum two-pulse UWB detector for different target fluctuation models. In Proceedings of radar 2008 conference, Adelaide, Australia (pp. 355–359).Google Scholar
  12. 12.
    Mohseni, R., Sheikhi, A., & Masnadi-shirazi, M.A. (2008). UWB radars based on wavelet packet OFDM signals. In Proceedings of the 2008 ICUWB conference, Hannover, Germany (Vol. 2, pp. 89–92).Google Scholar
  13. 13.
    Stralka, J. P. (2008). Applications of orthogonal frequency-division multiplexing (OFDM) to radar. Ph.D. dissertation, The Johns Hopkins Univ., Baltimore, MD.Google Scholar
  14. 14.
    Kay, S. M. (1998). Fundamentals of statistical signal processing: Detection theory. Upper Saddle River, NJ: Prentice Hall PTR.Google Scholar
  15. 15.
    Dicke, R. H. (1953). Object detection system. U.S.patent 2624876.Google Scholar
  16. 16.
    Trees, H. L. V. (1968). Detection, estimation, and modulation theory (Vol. 3). New York: Wiley.zbMATHGoogle Scholar
  17. 17.
    Shi, . Z. G., Qiao, S., & Chen, K. S. (2007). Ambiguity functions of direct chaotic radar employing microwave chaotic Colpitts oscillator. Progress In Electromagnetics Research, PIER, 77, 1–14.CrossRefGoogle Scholar
  18. 18.
    Mohseni, R., Sheikhi, A., & Masnadi Shirazi, M. A. (2008). Compression of multicarrier phase-coded radar signals based on discrete fourier transform (DFT). Progress in Electromagnetics Research (PIER) C, 5, 93–117.Google Scholar
  19. 19.
    Mohseni, R., Sheikhi, A., & Shirazi, M. (2008). Constant envelope OFDM signals for radar applications. In Proceedings of the IEEE radar conference (pp. 1–5).Google Scholar
  20. 20.
    Sebt, M. A., Norouzi, Y., Sheikhi, A., & Nayebi, M. M. (2008). OFDM radar signal design with optimized ambiguity function. In IEEE radar conference (pp. 1–5).Google Scholar
  21. 21.
    Pandharipande, A. (2002). Principles of OFDM. IEEE Potentials, 21(2), 16–19.MathSciNetCrossRefGoogle Scholar
  22. 22.
    May, T., & Rohling, H. (2001). Chap. 17–25. In A. F. Molisch (Ed.), Orthogonal frequency division multiplexing in wide band wireless digital communications. Upper Saddle River, NJ: Prentice Hall PTR.Google Scholar
  23. 23.
    Sen, S., & Nehorai, A. (2010). Multi-objective optimized OFDM radar waveform for target detection in multipath scenarios. In 44th Asilomar conference on signals, systems and computers, Pacittc Grove, CA (pp. 618–622).Google Scholar
  24. 24.
    Sen, S., & Nehorai, A. (2011). Adaptive OFDM radar for target detection in multipath scenarios. IEEE Transactions Signal Process, 59(1), 78–90.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sen, S., Hurtado, M., & Nehorai, A. (2009). Adaptive OFDM radar for detecting a moving target in urban scenarios. In Proceedings 4th international waveform diversity and design (WDD) conference, Orlando, FL (pp. 264–268).Google Scholar
  26. 26.
    Sen, S., & Nehorai, A. (2009). Target detection in clutter using adaptive OFDM radar. IEEE Signal Processing Letters, 16(7), 592–598.CrossRefGoogle Scholar
  27. 27.
    Sen, S., Tang, G., & Nehorai, A. (2011). Sparsity-based estimation for target detection in multipath scenarios. In IEEE Radar Conference, Kansas City, MO.Google Scholar
  28. 28.
    Sen, S., Tang, G., & Nehorai, A. Multi-objective optimization-based OFDM radar waveform design for target detection. IEEE Transactions on Signal Processing. https://ieeexplore.ieee.org/abstract/document/5613205.
  29. 29.
    May, T., & Rohling, H. (2001). Orthogonal frequency division multiplexing. In . A. F. Molisch (Ed.), Wideband wireless digital communications., Ch. 17–25 Upper Saddle River, NJ: Prentice Hall PTR.Google Scholar
  30. 30.
    Asada, J. (2010). Target detection with MSN Algorithm for the bistatic radar using digital broadcasting signals. In IEEE 21st international symposium on personal indoor and mobile radio communications (pp. 1060–1065).Google Scholar
  31. 31.
    Jameson, B. (2010) detection of behind-the-wall targets with adaptive UWB OFDM radar: Experimental approach. In IEEE radar conference (pp. 945–950).Google Scholar
  32. 32.
    Dawid, A. P. (1981). Some matrix-variate distribution theory: Notational considerations and a Bayesian application. Biometrika, 68, 265–274.  https://doi.org/10.1093/biomet/68.1.265.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Nezamabadi, M., Moniri, M. R. (2017). GLR detector in gaussian interference environment with auto-regressive spectrum in multi-channel of high-frequency surface wave radar. In IEEE microwaves, radar and remote sensing symposium (MRRS), Ukraine Google Scholar
  34. 34.
    Yang, Q., Li, S., & Cao, Y. (2018). An IMM-GLR approach for marine gas turbine gas path fault diagnosis. Mathematical Problems in Engineering.  https://doi.org/10.1155/2018/1918350.MathSciNetGoogle Scholar
  35. 35.
    Urbano, S., Chaumette, E., Goupil, P., & Tourneret, J.-Y. (2018). Aircraft vibration detection and diagnosis for predictive maintenance using a GLR Test. Predictive Maintenance Using a GLR Test, 51(24), 1030–1036.Google Scholar
  36. 36.
    Kafshgari, S., & Mohseni, R. (2015). GLR detection of fluctuating targets in OFDM radars. Advances in Computer Science and Engineering, 14(1), 35–57.CrossRefGoogle Scholar
  37. 37.
    Kafshgari, S., & Mohseni, R. (2013). Fluctuating target detection in presence of non-Gaussian clutter in OFDM radars. International Journal of Electronics and Communications (AEU), 67, 885–893.CrossRefGoogle Scholar
  38. 38.
    Khosravi, M. R. (2018). Efficient routing for dense UWSNs with high-speed mobile nodes using spherical divisions. Journal of Supercomputing, 74(2), 696–716.CrossRefGoogle Scholar
  39. 39.
    Khosravi, M. R. (2018). Distributed random cooperation for VBF-based routing in high-speed dense underwater acoustic sensor networks. Journal of Supercomputing, 74(11), 6184–6200.CrossRefGoogle Scholar
  40. 40.
    Gameiro, A., Daniel Castanheira, J., Sanson, P., & Monteiro, P. (2018). Research challenges, trends and applications for future joint radar communications systems. Wireless Personal Communications, 100(1), 81–96.CrossRefGoogle Scholar
  41. 41.
    Guan, S., Bridge, J. A., Li, C., & DeMello, N. J. (2019). Smart radar sensor network for bridge displacement monitoring. Journal of Bridge Engineering, 24(1), 04018102.CrossRefGoogle Scholar
  42. 42.
    Yao, Y., & Wu, L. (2018). Cognitive waveform design for radar-communication transceiver networks. Journal of Advanced Transportation, 2018, Article ID 182927.CrossRefGoogle Scholar
  43. 43.
    Karimi, V. (2018). OFDM waveform design based on mutual information for cognitive radar applications. Journal of Supercomputing.  https://doi.org/10.1007/s11227-018-2648-3.Google Scholar
  44. 44.
    Liang, J., Hu, Y., Liu, H., & Mao, C. (2016). Fuzzy clustering in radar sensor networks for target detection. Ad Hoc Networks.  https://doi.org/10.1016/j.adhoc.2016.09.008.Google Scholar
  45. 45.
    Liang, J., & Mao, C. (2016). HRRP recognition in radar sensor network. Ad Hoc Networks.  https://doi.org/10.1016/j.adhoc.2016.09.001.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringShiraz University of TechnologyShirazIran

Personalised recommendations