Skip to main content

Advertisement

Log in

Performance Analysis of a New MAC Protocol for Wireless Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this study, network performance analysis of a newly proposed cognitive radio wireless network (CRWN) medium access control (MAC) protocol is investigated in order to improve the performance of wireless cognitive radio networks (CRNs). Several MAC protocols have been used in the literature in order to increase the performance of wireless CRNs. In this context, a cognitive radio based MAC protocol is proposed, which is also a solution to the needs of wireless CRNs with high performance results. We propose an autonomous control strategy that recognizes both the primary network and the CRN environment considering the service quality requirements of the wireless CRN environment. Simulation of the network environment is performed with Riverbed Modeler software for more realistic performance evaluation. By selecting various workloads for secondary users, the analysis of different network performance parameters such as throughput ratios, end-to-end delays, packet loss ratios, bit error rates, and energy consumptions reveal the originality of our study. In addition, Slotted Aloha, TDMA, and CSMA/CA based MAC protocols for CRNs used in different studies in the literature are compared with CRWN. As a result, proposed protocol is given about 40% higher performance than Slotted Aloha in terms of throughput and about 36% higher performance than TDMA in terms of delay. Moreover, the proposed CRWN consumes less energy than CSMA/CA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks. https://doi.org/10.1016/j.comnet.2006.05.001.

    Article  MATH  Google Scholar 

  2. Cabric, D., Mishra, S. M., & Brodersen, R. W. (2004). Implementation issues in spectrum sensing for cognitive radios. In Conference record of the thirty-eighth Asilomar conference on signals, systems and computers, 2004. https://doi.org/10.1109/acssc.2004.1399240.

  3. Thoppian, M., Venkatesan, S., & Prakash, R. (2007). CSMA-based MAC protocol for cognitive radio networks. In IEEE international symposium on a world of wireless, mobile and multimedia networks, 2007. WoWMoM 2007. https://doi.org/10.1109/wowmom.2007.4351784.

  4. Brodersen, R. W., Wolisz, A., Cabric, D., Mishra, S. M., & Willkomm, D. (2004). Corvus: A cognitive radio approach for usage of virtual unlicensed spectrum. Berkeley Wireless Research Center (BWRC) white paper (pp. 1–21).

  5. Verma, G., & Sahu, O. P. (2018). A distance based reliable cooperative spectrum sensing algorithm in cognitive radio. Wireless Personal Communications, 99(1), 203–212. https://doi.org/10.1007/s11277-017-5052-z.

    Article  Google Scholar 

  6. Jaglan, R. R., Mustafa, R., & Agrawal, S. (2018). Scalable and robust ANN based cooperative spectrum sensing for cognitive radio networks. Wireless Personal Communications, 99(3), 1141–1157. https://doi.org/10.1007/s11277-017-5168-1.

    Article  Google Scholar 

  7. Bayrakdar, M. E., & Calhan, A. (2015). Fuzzy logic based spectrum handoff decision for prioritized secondary users in cognitive radio networks. In 2015 fifth international conference on Digital information processing and communications (ICDIPC) (pp. 71–76). IEEE. https://doi.org/10.1109/icdipc.2015.7323008.

  8. Bayrakdar, M. E., Atmaca, S., & Karahan, A. (2012). A slotted Aloha based random access cognitive radio network and its performance evaluation. In 2012 20th international conference on software, telecommunications and computer networks, SoftCOM 2012, (pp. 1–6). IEEE.

  9. He, Q., Feng, Z., & Zhang, P. (2011). Reasoning through fuzzy logical for reconfiguration in cognitive radio network. In 2011 international conference on wireless communications and signal processing, WCSP 2011. https://doi.org/10.1109/wcsp.2011.6096892.

  10. Cesana, M., Cuomo, F., & Ekici, E. (2011). Routing in cognitive radio networks: Challenges and solutions. Ad Hoc Networks, 9(3), 228–248. https://doi.org/10.1016/j.adhoc.2010.06.009.

    Article  Google Scholar 

  11. Hu, P., & Ibnkahla, M. (2014). A MAC protocol with mobility support in cognitive radio ad hoc networks: Protocol design and analysis. Ad Hoc Networks, 17, 114–128. https://doi.org/10.1016/j.adhoc.2014.01.008.

    Article  Google Scholar 

  12. Lo, B. F. (2011). A survey of common control channel design in cognitive radio networks. Physical Communication. https://doi.org/10.1016/j.phycom.2010.12.004.

    Article  Google Scholar 

  13. Di Felice, M., Chowdhury, K. R., Kim, W., Kassler, A., & Bononi, L. (2011). End-to-end protocols for cognitive radio ad hoc networks: An evaluation study. Performance Evaluation, 68(9), 859–875. https://doi.org/10.1016/j.peva.2010.11.005.

    Article  Google Scholar 

  14. Cormio, C., & Chowdhury, K. R. (2009). A survey on MAC protocols for cognitive radio networks. Ad Hoc Networks. https://doi.org/10.1016/j.adhoc.2009.01.002.

    Article  Google Scholar 

  15. Choe, S., & Park, S. K. (2009). Throughput of slotted ALOHA based cognitive radio MAC. In Proceedings of the 4th international conference on ubiquitous information technologies and applications, ICUT 2009. https://doi.org/10.1109/icut.2009.5405723.

  16. Cohen, K., Leshem, A., & Zehavi, E. (2013). Game theoretic aspects of the multi-channel ALOHA protocol in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 31(11), 2276–2288. https://doi.org/10.1109/JSAC.2013.131109.

    Article  Google Scholar 

  17. Hu, S., Yao, Y. D., & Sheikh, A. U. (2012). Slotted Aloha for cognitive radio users and its tagged user analysis. In 2012 21st annual wireless and optical communications conference, WOCC 2012 (pp. 1–5). https://doi.org/10.1109/wocc.2012.6198140.

  18. Li, X., Liu, H., Roy, S., Zhang, J., Zhang, P., & Ghosh, C. (2012). Throughput analysis for a multi-user, multi-channel ALOHA cognitive radio system. IEEE Transactions on Wireless Communications, 11(11), 3900–3909. https://doi.org/10.1109/TWC.2012.092112.111425.

    Article  Google Scholar 

  19. Chaoub, A., Elhaj, E. I., & El Abbadi, J. (2011). Multimedia traffic transmission over TDMA shared Cognitive Radio networks with poissonian primary traffic. In International conference on multimedia computing and systems-proceedings. https://doi.org/10.1109/icmcs.2011.5945589.

  20. Bayrakdar, M. E., & Çalhan, A. (2016). Delay characteristics of TDMA medium access control protocol for cognitive radio networks. In Computer sciences and information technologies: Proceedings of the 11th international scientific and technical conference, CSIT 2016 (pp. 66–69). https://doi.org/10.1109/stc-csit.2016.7589870.

  21. Bayrakdar, M. E., & Calhan, A. (2017). Performance evaluation of TDMA medium access control protocol in cognitive wireless. Computer Science Journal of Moldova, 25(1), 21–43.

    Google Scholar 

  22. Chaoub, A., & Elhaj, E. I. (2011). Multimedia traffic transmission over Cognitive Radio TDMA networks under secondary collision errors. In 2011 3rd international conference on next generation networks and services, NGNS’2011 (pp. 72–77). https://doi.org/10.1109/ngns.2011.6142542.

  23. Mahmoud, H., Yücek, T., & Arslan, H. (2009). OFDM for cognitive radio: Merits and challenges. IEEE Wireless Communications, 16(2), 6–14. https://doi.org/10.1109/MWC.2009.4907554.

    Article  Google Scholar 

  24. Bansal, G., Hossain, M., & Bhargava, V. (2008). Optimal and suboptimal power allocation schemes for OFDM-based cognitive radio systems. IEEE Transactions on Wireless Communications, 7(11), 4710–4718. https://doi.org/10.1109/T-WC.2008.07091.

    Article  Google Scholar 

  25. Sun, S., Ju, Y., & Yamao, Y. (2013). Overlay cognitive radio OFDM system for 4G cellular networks. IEEE Wireless Communications, 20(2), 68–73. https://doi.org/10.1109/MWC.2013.6507396.

    Article  Google Scholar 

  26. Zhang, Y., & Leung, C. (2009). Resource allocation in an OFDM-based cognitive radio system. IEEE Transactions on Communications, 57(7), 1928–1931. https://doi.org/10.1109/TCOMM.2009.07.070157.

    Article  Google Scholar 

  27. Wang, P. W. P., Zhao, M. Z. M., Xiao, L. X. L., Zhou, S. Z. S., & Wang, J. W. J. (2007). Power allocation in OFDM-based cognitive radio systems. In IEEE GLOBECOM 2007: IEEE global telecommunications conference (pp. 4061–4065). https://doi.org/10.1109/glocom.2007.772.

  28. Bansal, G., Hossain, M. J., & Bhargava, V. K. (2007). Adaptive power loading for OFDM-based cognitive radio systems. In IEEE international conference on communications (pp. 5137–5142). https://doi.org/10.1109/icc.2007.849.

  29. Singh, A., Salwe, S. S., Naik, K. K., & Kumar, C. R. S. (2018). OFDM-based TVWS-IEEE standards: A survey of PHY and cognitive radio features. Wireless Personal Communications, 1, 1. https://doi.org/10.1007/s11277-018-5877-0.

    Article  Google Scholar 

  30. Qu, Q., Milstein, L., & Vaman, D. (2008). Cognitive radio based multi-user resource allocation in mobile ad hoc networks using multi-carrier CDMA modulation. IEEE Journal on Selected Areas in Communications, 26(1), 70–82. https://doi.org/10.1109/JSAC.2008.0801007.

    Article  Google Scholar 

  31. Lien, S.-Y., Tseng, C.-C., & Chen, K.-C. (2008). Carrier sensing based multiple access protocols for cognitive radio networks. In 2008 IEEE international conference on communications (pp. 3208–3214). https://doi.org/10.1109/icc.2008.604.

  32. Huang, S., Liu, X., & Ding, Z. (2008). Opportunistic spectrum access in cognitive radio networks. In 2008 IEEE INFOCOM: The 27th conference on computer communications (pp. 1427–1435). https://doi.org/10.1109/infocom.2008.201.

  33. Zarrin, S., & Lim, T. J. L. T. J. (2008). Belief praopagation on factor graphs for cooperative spectrum sensing in cognitive radio. In 2008 3rd IEEE symposium on new frontiers in dynamic spectrum access networks (pp. 1–9). https://doi.org/10.1109/dyspan.2008.18.

  34. Shah, G. A., & Akan, O. B. (2014). Performance analysis of CSMA-based opportunistic medium access protocol in cognitive radio sensor networks. Ad Hoc Networks, 15, 4–13. https://doi.org/10.1016/j.adhoc.2013.03.014.

    Article  Google Scholar 

  35. Sampath, A., Yang, L., Cao, L., Zheng, H., & Zhao, B. Y. (2008). High throughput spectrum-aware routing for cognitive radio networks. In Proceedings of 3rd international conference on cognitive radio oriented wireless networks and communications (CROWNCOM) (pp. 1–6). IEEE.

  36. Chong, J. W., Sung, Y., & Sung, D. K. (2009). RawPEACH: Multiband CSMA/CA-based cognitive radio networks. Journal of Communications and Networks, 11(2), 175–186.

    Article  Google Scholar 

  37. Zhu, D. B., Wang, H. M., & Xu, Y. N. (2012). Performance analysis of CSMA in an unslotted cognitive radio network under non-saturation condition. In Proceedings of the 2012 2nd international conference on instrumentation and measurement, computer, communication and control, IMCCC 2012 (pp. 1122–1126). https://doi.org/10.1109/imccc.2012.264.

  38. Zhou, W., Jing, T., Huo, Y., Qian, J., & Li, Z. (2014). Double auction for joint channel and power allocation in cognitive radio networks. Computer Journal. https://doi.org/10.1093/comjnl/bxv032.

    Article  Google Scholar 

  39. Kanti, J., & Tomar, G. S. (2017). Solution of sensing failure problem: An improved two-stage detector. The Computer Journal, 1, 1–9. https://doi.org/10.1093/comjnl/bxx097.

    Article  Google Scholar 

  40. Hawa, M., AlAmmouri, A., Alhiary, A., & Alhamad, N. (2017). Distributed opportunistic spectrum sharing in cognitive radio networks. International Journal of Communication Systems, 30(7), e3147. https://doi.org/10.1002/dac.3147.

    Article  Google Scholar 

  41. Qureshi, F. F., Iqbal, R., & Asghar, M. N. (2017). Energy efficient wireless communication technique based on Cognitive Radio for Internet of Things. Journal of Network and Computer Applications, 89, 14–25. https://doi.org/10.1016/j.jnca.2017.01.003.

    Article  Google Scholar 

  42. Battula, R. B., Gopalani, D., & Gaur, M. S. (2017). Path and link aware routing algorithm for cognitive radio wireless mesh network. Wireless Personal Communications, 96(3), 3979–3993. https://doi.org/10.1007/s11277-017-4364-3.

    Article  Google Scholar 

  43. Saifan, R., Jafar, I., & Al Sukkar, G. (2017). Optimized cooperative spectrum sensing algorithms in cognitive radio networks. The Computer Journal, 60(6), 835–849. https://doi.org/10.1093/comjnl/bxx013.

    Article  Google Scholar 

  44. Hu, S., Yao, Y. D., & Yang, Z. (2012). MAC protocol identification approach for implement smart cognitive radio. In IEEE international conference on communications (pp. 5608–5612). https://doi.org/10.1109/icc.2012.6364881.

  45. SteelCentral. (2018). Riverbed. Riverbed Modeler Software.

  46. Çalhan, A. (2015). Performance analysis of traffic sensitive wireless body area networks. Pamukkale University Journal of Engineering Sciences, 21(5), 172–177. https://doi.org/10.5505/pajes.2014.71501.

    Article  Google Scholar 

  47. Anusha, M., Vemuru, S., & Gunasekhar, T. (2015). TDMA-based MAC protocols for scheduling channel allocation in multi-channel wireless mesh networks using cognitive radio. In 2015 international conference on circuits, power and computing technologies [ICCPCT-2015] (pp. 1–5). IEEE. https://doi.org/10.1109/iccpct.2015.7159517.

  48. Leone, P., & Schiller, E. M. (2013). Self-stabilizing TDMA algorithms for dynamic wireless ad-hoc networks. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 7718 LNCS, pp. 105–107). https://doi.org/10.1007/978-3-642-36092-3-12.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murtaza Cicioğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cicioğlu, M., Bayrakdar, M.E. & Çalhan, A. Performance Analysis of a New MAC Protocol for Wireless Cognitive Radio Networks. Wireless Pers Commun 108, 67–86 (2019). https://doi.org/10.1007/s11277-019-06388-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06388-w

Keywords

Navigation