A Novel Multi-Objective Efficient Offloading Decision Framework in Cloud Computing for Mobile Computing Applications

  • Shanthi Thangam ManukumarEmail author
  • Vijayalakshmi Muthuswamy


Mobile cloud computing is the emerging paradigm to improve mobile device computation issues using cloud resources. Computation offloading is an efficient way of transferring certain tasks from mobile devices to the cloud. The computationally intensive task of the mobile application executes on the remote cloud. In computational offloading, the decision making plays a vital role to decide whether a task to be offloaded to the cloud or to execute in the local side. The existing research focused either on the offloading part of the cloud side or the context of mobile devices. However, this paper considered both the cloud side and the mobiles side to make the efficient decision offloading decision. This paper proposes a novel multi-objective efficient offloading decision framework for supporting computational offloading based on the mobile applications’ complexity and the context of mobile devices. The main purpose of this framework is to improve the mobile devices, which executes the high computational task that consumes the high battery power and CPU utilization. The proposed framework dynamically explores and decides the optimal cloud by using the enhanced particle swarm optimization algorithm. Moreover, this paper reduces the battery power consumption, virtual machine cost and makespan of the task for providing the quality of services.


Computation offloading Mobile cloud Complexity-aware Context-aware Makespan 



This work was supported by Ministry of Electronics & Information Technology (MeitY), Government of India and the authors would like to thank for sanctioning “Visvesvaraya PhD Scheme for Electronics and IT” funding scheme with reference awardee number is VISPHD-MEITY-2559. The authors would also like to thank the anonymous reviewers and the editor for their valuable comments and suggestions.


  1. 1.
    Battery Life Concerns Mobile Users. (2005). Accessed 23 Sept 2005.
  2. 2.
    Shi, T., Yang, M., Li, X., Lei, Q., & Jiang, Y. (2014). An energy-efficient, time-constrained scheduling scheme in local mobile cloud. Pervasive and Mobile Computing. Scholar
  3. 3.
    Kim, Y., Lee, K., & Shroff, N. B. (2014). An analytical framework to characterize the efficiency and delay in a mobile data offloading system. In Proceedings of the 15th ACM international symposium on Mobile ad hoc networking and computing (pp. 267–276). ACM.Google Scholar
  4. 4.
    Gu, X., Nahrstedt, K., Messer, A., Greenberg, I., & Milojicic, D. (2003). Adaptive offloading inference for delivering applications in pervasive computing environments. In Proceedings of the first IEEE international conference on pervasive computing and communications (pp 107–114).Google Scholar
  5. 5.
    Xiang, T., Zhang, W., Zhong, S., & Yang, J. (2017). Verifiable outsourcing of constrained nonlinear programming by particle swarm optimization in cloud. Soft Computing, 22, 1–13. Scholar
  6. 6.
    Kosta, S., Aucinas, A., Hui, P., Mortier, R., & Zhang, X. (2011) Unleashing the power of mobile cloud computing using thinkair. Computing Research Repository. CORR arXiv preprint arXiv:1105.3232.
  7. 7.
    Cheung, M. H., & Huang, J. (2015). Dawn: Delay-aware Wi-Fi offloading and network selection. IEEE Journal on Selected Areas in Communications, 33(6), 1214–1223.CrossRefGoogle Scholar
  8. 8.
    Lee, K., & Shin, I. (2013). User mobility-aware decision making for mobile computation offloading. In Cyber-physical systems, networks, and applications (CPSNA) (pp. 116–119). IEEE.Google Scholar
  9. 9.
    Mukherjee, A., Gupta, P. & De, D. (2014). Mobile cloud computing based energy efficient offloading strategies for femtocell network. In 2014 applications and innovations in mobile computing (AIMoC) (pp. 28–35). IEEE.Google Scholar
  10. 10.
    App drain battery power. (2010). Accessed 25 Jan 2010.
  11. 11.
    Balan, R. K., Satyanarayanan, M., Park, S. Y., & Okoshi, T. (2003). Tactics-based remote execution for mobile computing. In Proceedings of the 1st international conference on mobile systems, applications and services (pp. 273–286).Google Scholar
  12. 12.
    Amoretti, M., Grazioli, A., & Zanichelli, F. (2015). A modeling and simulation framework for mobile cloud computing. In Simulation modelling practice and theory, (pp. 140–156).Google Scholar
  13. 13.
    Yal, S., & Carter, J. (2004). A lightweight secure cyber foraging infrastructure for resource-constrained devices. In Proceedings of the sixth IEEE workshop on mobile computing systems and applications (pp. 186–195). IEEE Computer Society.Google Scholar
  14. 14.
    Rajesh, B., Jason, F., Satyanarayanan, M., Shafeeq, S., & Hen-I, Y. (2002). The case for cyber foraging. In Proceedings of the 10th workshop on ACM SIGOPS European workshop (pp. 87–92).Google Scholar
  15. 15.
    Kumar, K., Liu, J., Lu, Y. H., & Bhargava, B. (2013). A survey of computation offloading for mobile systems. Mobile Network Applications, 18, 129–140.CrossRefGoogle Scholar
  16. 16.
    Hyytia, E., Spyropoulos, T., & Ott, J. (2015). Offload (only) the right jobs: Robust offloading using the Markov decision processes. In 2015 IEEE 16th international symposium on world of wireless, mobile and multimedia networks (WoWMoM) (pp. 1–9). IEEE.Google Scholar
  17. 17.
    Martin, P., Elgazzar, K., & Hassanein, H. S. (2016). Cloud-assisted computation offloading to support mobile services. IEEE Transactions on Cloud Computing, 4(3), 279–292.CrossRefGoogle Scholar
  18. 18.
    Kumar, K., & Lu, Y. H. (2010). Cloud computing for mobile users: Can offloading computation save energy? Computer Journal, 43, 51–56.Google Scholar
  19. 19.
    Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010). A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. In IEEE international conference on advance information networking and applications (pp. 400–407).Google Scholar
  20. 20.
    Zhou, B., Dastjerdi, A. V., Calheiros, R. N., Srirama, S. N. & Buyya, R. (2015). A context sensitive offloading scheme for mobile cloud computing service. In IEEE 8th international conference on cloud computing (pp. 869–876).Google Scholar
  21. 21.
    Akcayo, M. A., & Tanriverdi, M. (2015). Context-aware decision making system for mobile cloud offloading. International Journal of Computer Networks and Communications (IJCNC), 7(6), 68–85.Google Scholar
  22. 22.
    Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4(1), 18–27.CrossRefGoogle Scholar
  23. 23.
    Mukherjee, A., & De, D. (2016). Low power offloading strategy for femto-cloud mobile network. Engineering Science Technology International Jouranl, 19, 260–270.CrossRefGoogle Scholar
  24. 24.
    Xu, C., Jiao, L., Li, W., & Xiaoming, F. (2015). Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Transactions on Networking, 24(5), 2795–2808.Google Scholar
  25. 25.
    Xu, C. (2015). Decentralized computation offloading game for mobile cloud computing. IEEE Transactions on Parallel and Distributed Systems, 26(4), 974–983.CrossRefGoogle Scholar
  26. 26.
    Kemp, R., Palmer, N., Kielmann, T. & Bal, H. (2012). Cuckoo: A computation offloading framework for smartphones. In LNICS, social informatics and telecommunication engineering (Vol. 76, pp. 59–79). Springer.Google Scholar
  27. 27.
    Roy, D. G., De, D., Mukherjee, A., & Buyya, R. (2016). Application-aware cloudlet selection for computation offloading in multi-cloudlet environment. Journal of Supercomputing. Scholar
  28. 28.
    Chen, X., Chen, S., Zeng, X., Zhang, Y., Zheng, X., & Rong, C. (2017). Framework for context-aware computation offloading in mobile cloud computing. Journal of Cloud Computing: Advances, Systems and Applications, 6(1), 1–17.CrossRefGoogle Scholar
  29. 29.
    Saraswathi, A. T., Kalaashri, Y., & Padmavathi, S. (2015). Dynamic resource allocation scheme in cloud computing. Procedia Computer Science, 47, 30–36.CrossRefGoogle Scholar
  30. 30.
    Viswanathan, H., Lee, E. K., Rodero, I., & Pompili, D. (2015). Uncertainty-aware autonomic resource provisioning for mobile cloud computing. IEEE Transactions on Parallel and Distributed Systems, 26, 2363–2372.CrossRefGoogle Scholar
  31. 31.
    Ab Wahab, M. N., Nefti-Meziani, S., & Atyabi, A. (2015). A comprehensive review of swarm optimization algorithms. PLoS ONE, 10(5), e0122827.CrossRefGoogle Scholar
  32. 32.
    Pandey, V., Singh, S., & Tapaswi, S. (2015). Energy and time efficient algorithm for cloud offloading using dynamic profiling. Wireless Personal Communications, 80, 1687–1701.CrossRefGoogle Scholar
  33. 33.
    Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., & Epema, D. (2009). A performance analysis of EC2 cloud computing services for scientific computing. In Proceeding on 1st international conference cloud compuing (pp. 115–131).Google Scholar
  34. 34.
    Khan, A. R., Othman, M., Khan, A. N., Shuja, J., & Mustafa, S. (2017). Computation offloading cost estimation in mobile cloud application models. Wireless Personal Communications, 97, 4897–4920.CrossRefGoogle Scholar
  35. 35.
    Delange, J., Hudak, J., Nichols, W., McHale, J., & Nam, M.-Y. (2015). Evaluating and mitigating the impact of complexity in software models. Software Engineering Institute | carnegie mellon university, cmu/sei-2015-tr-013.Google Scholar
  36. 36.
    Altamimi, M., Abdrabou, A., Naik, K., & Nayak, A. (2015). Energy cost models of smartphones for task offloading to the cloud. IEEE Transactions on Emerging Topics in Computing, 3(3), 384–398.CrossRefGoogle Scholar
  37. 37.
    Mavromoustakis, C. X., Andreou, A., Mastorakis, G., Bourdena, A., Batalla, J. M., & Dobre, C. (2015). On the performance evaluation of a novel offloading-based energy conservation mechanism for wireless devices. In Mobile networks and management (pp. 179–191). Springer.Google Scholar
  38. 38.
    Atencio, L. (2012). Measuring code complexity. Accessed 30 March 2012.
  39. 39.
    Huang, J., Wu, K., Leong, L. K., Ma, S., & Moh, M. (2013). A tunable workflow scheduling algorithm based on particle swarm optimization for cloud computing. In Proceeding of international conference on soft computing and software engineering [SCSE’13].Google Scholar
  40. 40.
    Kalra, M., & Singh, S. (2015). A review of metaheuristic scheduling techniques in cloud computing. Egyptian Informatics Journal, 16(3), 275–295.CrossRefGoogle Scholar
  41. 41.
    Adrian, A. M., Utamima, A., & Wang, K.-J. (2015). A comparative study of GA, PSO and ACO for solving construction site layout optimization. KSCE Journal of Civil Engineering, 19(3), 520–527.CrossRefGoogle Scholar
  42. 42.
    Masdari, M., Salehi, F., Jalali, M., & Bidaki, M. (2017). A survey of PSO-Based scheduling algorithms in cloud computing. Journal of Network Systems Management, 25, 122–158.CrossRefGoogle Scholar
  43. 43.
    Chun, B. G., Ihm, S., Maniatis, P., Naik, M., & Patti, A. (2011). CloneCloud: Elastic execution between mobile device and cloud. In Proceeding ACM EuroSys’11, Salzburg, Austria (pp. 301–314).Google Scholar
  44. 44.
    Chun B. G., & Maniatis, P. (2009). Augmented smartphone applications through clone cloud execution. In Proceeding HotOS’09, Monte Verit`a, Switzerland (pp. 8–14).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shanthi Thangam Manukumar
    • 1
    Email author
  • Vijayalakshmi Muthuswamy
    • 1
  1. 1.Department of Information Science and TechnologyCollege of Engineering Guindy, Anna UniversityChennaiIndia

Personalised recommendations