Advertisement

Long-Reach High-Capacity Hybrid MDM-OFDM-FSO Transmission Link Under the Effect of Atmospheric Turbulence

  • Mehtab SinghEmail author
  • Jyoteesh Malhotra
Article
  • 13 Downloads

Abstract

Orthogonal frequency division multiplexing (OFDM) based free space optics (FSO) link is a promising technology for future wireless data transmission networks. In this paper, we report designing and performance analysis of hybrid OFDM-FSO link for the transmission of 4 independent channels each having a data rate of 20 Gb/s incorporating Mode division multiplexing of distinct Hermite Gaussian modes (HG00, HG01, HG02, and HG03) over a link distance of 10 km to 50 km under clear weather conditions. The performance of the proposed link is also evaluated under the effect of atmospheric turbulence and beam divergence.

Keywords

Orthogonal frequency division multiplexing Free space optics Mode division multiplexing Hermite Gaussian modes Atmospheric turbulence 

Notes

References

  1. 1.
    Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys and Tutorials, 16(4), 2231–2258.CrossRefGoogle Scholar
  2. 2.
    Mahdy, A., & Deogun, J. S. (2004). Wireless optical communications: A survey. Proceedings of IEEE Wireless Communications and Networking Conference, 4, 2399–2404.Google Scholar
  3. 3.
    G. Nykolak, P.F. Szajowski, G. Tourgee and H. Presby. (1999). 2.5Gbit/s Free Space Optical Link over 4.4 km. Electronic Letters, 35(7). 578-579.Google Scholar
  4. 4.
    Al-Gailani, S.A., Mohammad, A.B., Shaddad, R.Q. (2012). Evaluation of a 1 Gb/s free space optic system in typical Malaysian weather. In Proceedings of IEEE 3rd International Conference on Photonics, (pp. 121-124), IEEE-Malaysia.Google Scholar
  5. 5.
    Ramezani, A., Noroozi, M. R., & Aghababaee, M. (2014). Analyzing free space optical communication performance. International Journal of Engineering and Advanced Technology, 4(1), 46–51.Google Scholar
  6. 6.
    Singh, Jitendra, & Kumar, Naresh. (2013). Performance analysis of different modulation format on free space optical communication system. Optik—International Journal of Light and Electron Optics, 124(20), 4651–4654.CrossRefGoogle Scholar
  7. 7.
    Attri, S., Narula, C., Kumar, S. (2017). Performance analysis of FSO Link using CO-OFDM under the effect of atmospheric turbulence. In Proceedings of International conference on Intelligent Communication, Control, Devices, (pp. 167-172). Springer-Singapore.Google Scholar
  8. 8.
    Sharma, V., & Kaur, G. (2013). High speed long reach OFDM-FSO transmission link incorporating OSSB and OTSB schemes. Optik, 124(23), 6111–6114.CrossRefGoogle Scholar
  9. 9.
    Chaudhary, S., Amphawan, A., & Nisar, K. (2014). Realization of free space optics with OFDM under atmospheric turbulence. Optik, 125(18), 5196–5198.CrossRefGoogle Scholar
  10. 10.
    Kumar, N., Sharma, A. K., & Kapoor, V. (2014). Performance investigations on WDM based OFDM-RoF transmission links. Journal of Optical Communication, 35(2), 151–156.CrossRefGoogle Scholar
  11. 11.
    Randel, S., Ryf, R., Sierra, A., Winzer, P. J., Gnauck, A. H., Bolle, C. A., Essiambre, R. J. et. al. (2011). Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing. Proceedings of Optical Fiber Communication Conference and Exposition (OFC/NFOEC). Google Scholar
  12. 12.
    Amphawan, A., Dominic, O. (2010). Modal decomposition of output field for holographic mode field generation in a multimode fiber channel. Proceedings of International Conference Photonics (ICP), IEEE, Langkawi, Malaysia.Google Scholar
  13. 13.
    Amphawan, A., Mishrab, V., Nisaran, K., & Nedniyomc, B. (2012). Realtime holographic backlighting positioning sensor for enhanced power coupling efficiency into selective launches in multimode fiber. Journal of Modern Optics, 59, 1745–1752.CrossRefGoogle Scholar
  14. 14.
    Amphawan, A. (2011). Binary encoded computer generated holograms for temporal phase shifting. Optics Express, 19, 23085–23096.CrossRefGoogle Scholar
  15. 15.
    Amphawan, A. (2012). Binary spatial amplitude modulation of continuous transverse modal electric field using a single lens for mode selectivity in multimode fiber. Journal of Modern Optics, 59, 460–469.CrossRefGoogle Scholar
  16. 16.
    Jung, Y., Chen, R., Ismaeel, R., Brambilla, G., Alam, S. U., Giles, I. P., et al. (2013). Dual mode fused optical fiber couplers suitable for mode division multiplexed transmission. Optics Express, 21, 24326–24331.CrossRefGoogle Scholar
  17. 17.
    Amphawan, A., Benjaporn, N., & Nashwan, M. A. S. (2014). Selective excitation of LP01 mode in multimode fiber using solid-core photonic crystal fiber. Journal of Modern Optics, 60(20), 1675–1683.CrossRefGoogle Scholar
  18. 18.
    Huang, H., et al. (2014). 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Optics Letters, 39, 197–200.CrossRefGoogle Scholar
  19. 19.
    Ren, Y., et al. (2015). 400-Gbit/s free space optical communications link over 120-meter using multiplexing of 4 collocated orbital angular- momentum beams. In Optical Fiber Communication Conference, (pp. M2F. 1). Optical Society of America.Google Scholar
  20. 20.
    Zhao, Y., et al. (2016). Experimental Demonstration of 260-meter Security Free-Space Optical Data Transmission Using 16-QAM Carrying Orbital Angular Momentum (OAM) Beams Multiplexing. In Optical Fiber Communication Conference, (pp. Th1H. 3). Optical Society of America.Google Scholar
  21. 21.
    Trichili, A., et al. (2016). Optical communication beyond orbital angular momentum. Scientific Reports, 6, 27674–27683.CrossRefGoogle Scholar
  22. 22.
    Amphawan, A., et al. (2015) Free-space optical mode division multiplexing for switching between millimeter-wave picocells. In International Conference on Optical and Photonic Engineering (icOPEN2015), (pp. 95242H-95242H-95246). International Society for Optics and Photonics.Google Scholar
  23. 23.
    Chaudhary, S., & Amphawan, A. (2018). High speed MDM-Ro-FSO communication system by incorporating AMI scheme. International Journal of Electronics Letters.  https://doi.org/10.1080/21681724.2018.1494318.Google Scholar
  24. 24.
    Chaudhary, Sushank, & Amphawan, Angela. (2018). Solid core PCF-based mode selector for MDM-Ro-FSO transmission systems. Photonic Network Communications, 36(2), 263–271.CrossRefGoogle Scholar
  25. 25.
    Chaudhary, Sushank, & Amphawan, Angela. (2018). Selective excitation of LG 00, LG 01, and LG 02 modes by a solid core PCF based mode selector in MDM-Ro-FSO transmission systems. Laser Physics, 28, 1–9.Google Scholar
  26. 26.
    Muniz, A. L. M., et al. (2016). Ultra-broadband photonics-based RF front-end toward 5G networks. IEEE/OSA Journal of Optical Communications and Networking, 8, B35–B42.CrossRefGoogle Scholar
  27. 27.
    Abadi, M. M., et al. (2016). Dual Purpose Antenna for Hybrid Free Space Optics/RF Communication Systems. Journal of Lightwave Technology, 34, 3432–3439.CrossRefGoogle Scholar
  28. 28.
    Feng, J., et al. (2016). Performance analysis of mixed RF/FSO systems with STBC users. Optics Communications, 381, 244–252.CrossRefGoogle Scholar
  29. 29.
    Djordjevic, G.T., et al. (2016) BER analysis of WiMAX on FSO. In 18th International Conference on Transparent Optical Networks (ICTON), (pp. 1–6).Google Scholar
  30. 30.
    Amphawan, A., et al. (2015) Free-space optical mode division multiplexing for switching between millimeter-wave picocells. In Proceedings of SPIE, (pp. 95242H-95242H-95246).Google Scholar
  31. 31.
    Wang, Y., et al. (2016). Fuzzy logic based dynamic handover scheme for indoor Li-Fi and RF hybrid network. In IEEE International Conference on Communications (ICC), (pp. 1–6).Google Scholar
  32. 32.
    Wang, F., et al. (2015). Efficient vertical handover scheme for heterogeneous VLC-RF systems. IEEE/OSA Journal of Optical Communications and Networking, 7, 1172–1180.CrossRefGoogle Scholar
  33. 33.
    Trinh, P.V., et al. (2016). Mixed mmWave RF/FSO relaying systems over generalized fading channels with pointing errors. In IEEE Photonics Journal, (pp. 1–10).Google Scholar
  34. 34.
    Soleimani-Nasab, E., et al. (2016). Generalized performance analysis of mixed RF/FSO cooperative systems. IEEE Transactions on Wireless Communications, 15, 714–727.CrossRefGoogle Scholar
  35. 35.
    Petkovic, M. I., et al. (2016). Mixed RF/FSO relaying systems. In M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, & E. Udvary (Eds.), Optical wireless communications: An emerging technology (pp. 387–407). Berlin: Springer.CrossRefGoogle Scholar
  36. 36.
    AlQuwaiee, H., et al. (2016). On the maximum and minimum of double generalized Gamma variates with applications to the performance of free-space optical communication systems. IEEE Transactions on Vehicular Technology, 65, 8822–8831.CrossRefGoogle Scholar
  37. 37.
    Yang, L., et al. (2015). Performance of mixed RF/FSO with variable gain over generalized atmospheric turbulence channels. IEEE Journal on Selected Areas in Communications, 33, 1913–1924.CrossRefGoogle Scholar
  38. 38.
    Amphawan, A., et al. (2015). 5Gbps HG 0,1 and HG 0,3 optical mode division multiplexing for RoFSO. In IEEE International Colloquium Signal Processing and its Applications (CSPA), IEEE, Kuala Lumpur.Google Scholar
  39. 39.
    Amphawan, A., et al. (2014). 2 × 20 Gbps-40 GHz OFDM Ro-FSO transmission with mode division multiplexing. Journal of the European Optical Society-Rapid publications, 9, 1–6.CrossRefGoogle Scholar
  40. 40.
    Amphawan, A., et al. (2015). Mode division multiplexing of LG and HG modes in Ro-FSO. In Proceedings of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2015), Palembang, Indonesia, (pp. 133–137).Google Scholar
  41. 41.
    Ghatak, A., & Thyagarajan, K. (1998). An introduction to Fiber Optics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  42. 42.
    Kolev, D. R., Wakamori, K., & Matsumoto, M. (2012). Transmission analysis of OFDM-based services over line-of-sight indoor infrared laser wireless links. Journal of Lightwave Technology, 30, 2735–3727.CrossRefGoogle Scholar
  43. 43.
    Sarangal, H., Singh, A., Malhotra, J., & Chaudhary, S. (2017). A cost effective 100 Gbps hybrid MDM-OCDMA-FSO transmission system under atmospheric turbulences. Optical and Quantum Electronics, 49, 184–193.CrossRefGoogle Scholar
  44. 44.
    Pan, L., Ding, C., & Wang, H. (2014). Diffraction of cosine-Gaussian correlated Schell-model beams. Optics Express, 22, 11670–11679.CrossRefGoogle Scholar
  45. 45.
    Andrews, L. C., & Phillips, R. L. (2005). Laser beam propagation through random media (2nd ed.). Bellingham: SPIE Press Book.CrossRefGoogle Scholar
  46. 46.
    Kim, I., Mcarthur, B., & Korevaar, E. (2006). Comparison of laser beam propagation at 785 and 1550 nm in fog and haze for optical wireless communications. Proceedings of SPIE optical wireless communication, 6303, 26–37.Google Scholar
  47. 47.
    Kruse, P. W., McGlauchlin, L. D., & McQuistan, R. B. (1962). Elements of infrared technology: Generation, transmission, and detection. New York: Wiley.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electronics and Communication Engineering DepartmentGuru Nanak Dev UniversityJalandharIndia

Personalised recommendations