Shifted 2-N-PSK Method for the Detection of Pilot Contamination Attacks

  • Dimitriya MihaylovaEmail author
  • Zlatka Valkova-Jarvis
  • Georgi Iliev
  • Vladimir Poulkov


One major security problem at the physical layer of a wireless system is its vulnerability to pilot contamination attacks. A potential method for the detection of such active attacks involves training with two N-PSK pilots which however suffers from operational problems. In this paper we propose and evaluate the Shifted 2-N-PSK technique as an improvement on the original method. The Shifted 2-N-PSK method operates with two pilots from different constellations, each of which is shifted from the original N-PSK constellation. The performance of three variations of Shifted 2-N-PSK is presented and the most effective implementation of the technique is revealed to be when neither the shift values nor the difference between them equal an N-PSK angle. Experimental results are also provided, in order to confirm the theoretical estimates. In addition, a detailed analysis of the shift values and the number of their optimal combinations are presented for different accuracies.


Wireless communications Physical layer security Pilot contamination attacks Channel state information Shifted constellations Intercell interference 



This work was supported by the Project № ДH 07/22 of the Bulgarian “Scientific Research Fund”.


  1. 1.
    Pecorella, T., Brilli, L., & Mucchi, L. (2016). The role of physical layer security in IoT: A novel perspective. Information, 7(49), 1–17.Google Scholar
  2. 2.
    Trappe, W., Howard, R., & Moore, R. S. (2015). Low-energy security: Limits and opportunities in the internet of things. IEEE Security and Privacy, 13(1), 14–21.CrossRefGoogle Scholar
  3. 3.
    Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Renzo, M. D. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine, 53(4), 20–27.CrossRefGoogle Scholar
  4. 4.
    Munisankaraiah, S., Kumar, A. (2016). Physical layer security in 5G wireless networks for data protection. In 2016 2nd International conference on next generation computing technologies (NGCT), Dehradun, India, (pp. 14–16).Google Scholar
  5. 5.
    Zeng, K. (2015). Physical layer key generation in wireless networks: Challenges and opportunities. IEEE Communications Magazine, 53(6), 33–39.CrossRefGoogle Scholar
  6. 6.
    Trappe, W. (2015). The challenges facing physical layer security. IEEE Communications Magazine, 53(6), 16–20.CrossRefGoogle Scholar
  7. 7.
    Zhou, X., Maham, B., & Hjorungnes, A. (2012). Pilot contamination for active eavesdropping. IEEE Transactions on Wireless Communications, 11(3), 903–907.CrossRefGoogle Scholar
  8. 8.
    Mihaylova, D., Valkova-Jarvis, Z., Iliev, G., & Poulkov, V. (2017). Shifted constellation-based detection of pilot contamination attacks. Global wireless summit (GWS) 2017, Cape Town, South Africa, 15–18.Google Scholar
  9. 9.
    Kapetanovic, D., Zheng, G., Wong, K.-K., & Ottersten, B. (2013). Detection of pilot contamination attack using random training and massive MIMO. In Proceedings of the IEEE International Symposium (PIMRC), (pp. 13–18).Google Scholar
  10. 10.
    Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRefGoogle Scholar
  11. 11.
    Shiu, Y.-S., Chang, S. Y., Wu, H.-C., Huang, S.-H., & Chen, H.-H. (2011). Physical layer security in wireless networks: A tutorial. IEEE Wireless Communications Magazine, 18(2), 66–74.CrossRefGoogle Scholar
  12. 12.
    Wyner, A. (1975). The wire-tap channel. The Bell System Technical Journal, 54(8), 1355–1387.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Poor, H. V., & Schaefer, R. F. (2017). Wireless physical layer security. Proceeding of National Academy of Sciences of the United States of America (PNAS), 114(1), 19–26.CrossRefGoogle Scholar
  14. 14.
    Sodagari, S., & Clancy, T. C. (2015). On singularity attacks in MIMO channels. Transactions on Emerging Telecommunication Technologies, 26(3), 482–490.CrossRefGoogle Scholar
  15. 15.
    Kapetanovic, D., Zheng, G., & Rusek, F. (2015). Physical layer security for massive MIMO: An overview on passive eavesdropping and active attacks. IEEE Communications Magazine, 53(6), 21–27.CrossRefGoogle Scholar
  16. 16.
    Kapetanovic, D., Al-Nahari, A., Stojanovic, A., & Rusek, F. (2014). Detection of active eavesdroppers in massive MIMO. In Proceedings of the IEEE International Symposium. PIMRC (pp. 585–589).Google Scholar
  17. 17.
    Mihaylova, D., Iliev, G., Valkova-Jarvis, Z. (2017). Comparison of methods for the detection of pilot contamination attacks. In First international balkan conference on communications and networking (BalkanCom 2017), Tirana, Albania, 30 May–2.Google Scholar
  18. 18.
    Castaneda, M., Ivrlac, M., Nossek, J., Viering, I., & Klein, A. (2007). On downlink intercell interference in a cellular system. Proceedings of the IEEE international symposium on personal, indoor and mobile radio communications (PIMRC).Google Scholar
  19. 19.
    Viering, I., Klein, A., Ivrlaˇc, M., Casta˜neda, M., & Nossek, J. A. (2006). On uplink intercell interference in a cellular system. In IEEE Interntational Conference on Communications ICC 2006, Istanbul, Turkey.Google Scholar
  20. 20.
    Iliev, G., Nikolova, Z., Poulkov, V., & Ovtcharov, M. (2010). Narrowband interference suppression for MIMO MB-OFDM UWB communication systems. International Journal on Advances in Telecommunications, 3(1, 2), 1–8.Google Scholar
  21. 21.
    Nikolova, Z., Iliev, G., Ovtcharov, M., & Poulkov, V. (2009). Narrowband interference suppression in wireless ofdm systems. African Journal of Information and Communication Technology, 5(1), 30–42.CrossRefGoogle Scholar
  22. 22.
    Iliev G., Ovtcharov, M., Poulkov, V., & Nikolova, Z. (2009). Narrowband interference suppression for MIMO OFDM system using adaptive filter banks. In The 5th international wireless communications and mobile computing conference -IWCMC 2009 MIMO systems symposium, Leipzig, Germany, (pp. 874–877).Google Scholar
  23. 23.
    Marzetta, T. L. (2010). Non-cooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRefGoogle Scholar
  24. 24.
    Elijah, O., Leow, C. Y., Rahman, T. A., Nunoo, S., & Iliya, S. Z. (2016). A comprehensive survey of pilot contamination in massive MIMO-5G system. IEEE Commun. Surveys Tuts., 18(2), 905–923.CrossRefGoogle Scholar
  25. 25.
    Mihaylova, D., Valkova-Jarvis, Z., & Iliev, G. (2017). A new technique to improve the 2-N-PSK method for detecting wireless pilot contamination attacks. WSEAS Transmission Communication, 16, 176–183.Google Scholar
  26. 26.
    Mihaylova, D., Valkova-Jarvis, Z., & Iliev, G. (2017). Detection capabilities of a shifted constellation-based method against pilot contamination attacks. Advances in Wireless and Optical Communications 2017 (RTUWO’17), Riga, Latvia, (pp. 2–3).Google Scholar
  27. 27.
    Mihaylova, D., Valkova-Jarvis, Z., & Iliev, G. (2017). An improved technique for the detection of pilot contamination attacks in TDD wireless communication systems. In 21st international conference on circuits, systems, communications and computers (CSCC 2017), Crete, Greece (pp. 14–17).Google Scholar
  28. 28.
    Tabassum, H., Yilmaz, F., Dawy, Z., & Alouini, M.-S. (2013). A framework for uplink intercell interference modeling with channel-based scheduling. IEEE Transactions on Wireless Communications, 12(1), 206–217.CrossRefGoogle Scholar
  29. 29.
    Novlan, T., Dhillon, H., & Andrews, J. (2013). Analytical modeling of uplink cellular networks. IEEE Transactions on Wireless Communications, 12(6), 2669–2679.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Dimitriya Mihaylova
    • 1
    Email author
  • Zlatka Valkova-Jarvis
    • 1
  • Georgi Iliev
    • 1
  • Vladimir Poulkov
    • 1
  1. 1.Faculty of TelecommunicationsTechnical University of SofiaSofiaBulgaria

Personalised recommendations