Advertisement

Optical Burst Routing by Balanced Wavelength Allocation Under Multi-objective Quality Metrics

  • Veparala Kishen Ajay KumarEmail author
  • Katam Suresh Reddy
  • Mahendra Giri Prasad
Article
  • 1 Downloads

Abstract

The optical burst switching is promising optical network technique that intends to transmit data in the form of bursts with the ability of dynamic switching between sub-wave lengths. One among the crucial issues of the OBS networks is burst loss due to suboptimal and often impediment burst scheduling and wavelength allocation strategies. Hence, the major contributions of the contemporary research in regard to OBS networks entails to portray the optimal burst routing strategies. The contribution of this manuscript is balanced wavelength allocation using differential evolution method in short referred as BWADE, which selects an optimum multi-hop route that intends to uses multi-objective QoS aspects as a fitness scale for differential evolution algorithm. The experimental study concluding that the proposed BWADE outperforming the other contemporary routing approaches through simulation outcomes.

Keywords

BWADE OBS network WDM-OBS transmission system JAVOBS GA algorithm DE approach 

Notes

References

  1. 1.
    Chen, Y., Qiao, C., & Yu, X. (2004). Optical burst switching (OBS): A new area in optical networking research. IEEE Network, 18(3), 16–23.CrossRefGoogle Scholar
  2. 2.
    Xiong, Y., Vandenhoute, M., & Cankaya, H. C. (2000). Control architecture in optical burst-switched WDM networks. IEEE Journal on Selected Areas in Communications, 18(10), 1838–1851.CrossRefGoogle Scholar
  3. 3.
    Barpanda, R. S., Turuk, A. K., & Sahoo, B. (2018). QoS aware routing and wavelength allocation in optical burst switching networks using differential evolution optimization. Digital Communications and Networks, 4(1), 3–12.CrossRefGoogle Scholar
  4. 4.
    Rosberg, Z., Le Vu, H., Zukerman, M., & White, J. (2003). Performance analyses of optical burst-switching networks. IEEE Journal on Selected Areas in Communications, 21(7), 1187–1197.CrossRefGoogle Scholar
  5. 5.
    Belbekkouche, A., Hafid, A., Gendreau, M., & Tagmouti, M. (2011). Path-based QoS provisioning for optical burst switching networks. Journal of Lightwave Technology, 29(13), 2048–2063.CrossRefGoogle Scholar
  6. 6.
    Zhang, Q., Vokkarane, V. M., Jue, J. P., & Chen, B. (2004). Absolute QoS differentiation in optical burst-switched networks. IEEE Journal on Selected Areas in Communications, 22(9), 1781–1795.CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Hamdi, M., & Tsang, D. H. (2001). Proportional QoS over OBS networks. In Global telecommunications conference, 2001. GLOBECOM’01. IEEE (Vol. 3, pp. 1510–1514). IEEE.Google Scholar
  8. 8.
    Ramaswami, R., Sivarajan, K., & Sasaki, G. (2009). Optical networks: A practical perspective. Burlington: Morgan Kaufmann.Google Scholar
  9. 9.
    Brackett, C. A. (1990). Dense wavelength division multiplexing networks: Principles and applications. IEEE Journal on Selected Areas in Communications, 8(6), 948–964.CrossRefGoogle Scholar
  10. 10.
    Qiao, C., & Yoo, M. (1999). Optical burst switching (OBS)—A new paradigm for an Optical Internet^{1}. Journal of high speed networks, 8(1), 69–84.Google Scholar
  11. 11.
    Thodime, G. R., Vokkarane, V. M., & Jue, J. P. (2003, December). Dynamic congestion-based load balanced routing in optical burst-switched networks. In Global telecommunications conference, 2003. GLOBECOM’03. IEEE (Vol. 5, pp. 2628–2632). IEEE.Google Scholar
  12. 12.
    Dolzer, K., Gauger, C., Späth, J., & Stefan, B. (2001). Evaluation of reservation mechanisms for optical burst switching. AEU-International Journal of Electronics and Communications, 55(1), 18–26.CrossRefGoogle Scholar
  13. 13.
    Ljolje, M., Inkret, R., & Mikac, B. (2005, January). A comparative analysis of data scheduling algorithms in optical burst switching networks. In 2005 conference on optical network design and modeling.Google Scholar
  14. 14.
    Yoo, M., Qiao, C., & Dixit, S. (2000). QoS performance of optical burst switching in IP-over-WDM networks. IEEE Journal on Selected Areas in Communications, 18(10), 2062–2071.CrossRefGoogle Scholar
  15. 15.
    Yang, M., Zheng, S. Q., & Verchere, D. (2001). A QoS supporting scheduling algorithm for optical burst switching DWDM networks. In Global telecommunications conference, 2001. GLOBECOM’01. IEEE (Vol. 1, pp. 86–91). IEEE.Google Scholar
  16. 16.
    J Xu, J., Qiao, C., Li, J., & Xu, G. (2003, March). Efficient channel scheduling algorithms in optical burst switched networks. In INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications. IEEE Societies (Vol. 3, pp. 2268–2278). IEEE.Google Scholar
  17. 17.
    Vokkarane, V. M., Zhang, Q., Jue, J. P., & Chen, B. (2002, November). Generalized burst assembly and scheduling techniques for QoS support in optical burst-switched networks. In Global telecommunications conference, 2002. GLOBECOM’02. IEEE (Vol. 3, pp. 2747–2751). IEEE.Google Scholar
  18. 18.
    Ping, D. U. (2007). QoS control and performance improvement methods for optical burst switching networks. PhD Dissertation, department of informatics, School of multidisciplinary sciences, The graduate university for advanced studies (SOKENDAI).Google Scholar
  19. 19.
    Danielsen, S. L., Mikkelsen, B., Joergensen, C., Durhuus, T., & Stubkjaer, K. E. (1997). WDM packet switch architectures and analysis of the influence of tunable wavelength converters on the performance. Journal of Lightwave Technology, 15(2), 219–227.CrossRefGoogle Scholar
  20. 20.
    Forghieri, F., Bononi, A., & Prucnal, P. R. (1995). Analysis and comparison of hot-potato and single-buffer deflection routing in very high bit rate optical mesh networks. IEEE Transactions on Communications, 43(1), 88–98.CrossRefGoogle Scholar
  21. 21.
    Ozdaglar, A. E., & Bertsekas, D. P. (2003). Routing and wavelength assignment in optical networks. IEEE/ACM Transactions On Networking (ton), 11(2), 259–272.CrossRefGoogle Scholar
  22. 22.
    Chraplyvy, A. R. (1990). Limitations on lightwave communications imposed by optical-fiber nonlinearities. Journal of Lightwave Technology, 8(10), 1548–1557.CrossRefGoogle Scholar
  23. 23.
    Liga, G., Xu, T., Alvarado, A., Killey, R. I., & Bayvel, P. (2014). On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission. Optics Express, 22(24), 30053–30062.CrossRefGoogle Scholar
  24. 24.
    Maher, R., Xu, T., Galdino, L., Sato, M., Alvarado, A., Shi, K., et al. (2015). Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation. Scientific Reports, 5, 8214.CrossRefGoogle Scholar
  25. 25.
    Wen, B., & Sivalingam, K. M. (2002). Routing, wavelength and time-slot assignment in time division multiplexed wavelength-routed optical WDM networks. In INFOCOM 2002. Twenty-first annual joint conference of the IEEE computer and communications societies. Proceedings. IEEE (Vol. 3, pp. 1442–1450). IEEE.Google Scholar
  26. 26.
    Wen, B., Shenai, R., & Sivalingam, K. (2005). Routing, wavelength and time-slot-assignment algorithms for wavelength-routed optical WDM/TDM networks. Journal of Lightwave Technology, 23(9), 2598.CrossRefGoogle Scholar
  27. 27.
    Rajalakshmi, P., & Jhunjhunwala, A. (2006, September). Routing wavelength and timeslot reassignment algorithms for TDM based optical WDM networks-multi rate traffic demands. In 14th IEEE international conference on networks, 2006. ICON’06 (Vol. 2, pp. 1–6). IEEE.Google Scholar
  28. 28.
    Rajalakshmi, P., & Jhunjhunwala, A. (2007). Routing wavelength and time-slot reassignment algorithms for TDM based optical WDM networks. Computer Communications, 30(18), 3491–3497.CrossRefGoogle Scholar
  29. 29.
    Um, T. W., Choi, J. K., Choi, S. G., & Ryu, W. (2006, July). Centralized resource allocation for time-slotted OBS networks. In International conference on networking and services, 2006. ICNS’06 (p. 40). IEEE.Google Scholar
  30. 30.
    Yang, W., & Hall, T. J. (2006, May). Distributed dynamic routing, wavelength and timeslot assignment for bandwidth on demand in agile all-optical networks. In Canadian conference on electrical and computer engineering, 2006. CCECE’06 (pp. 136–139). IEEE.Google Scholar
  31. 31.
    Zhang, Z., Liu, L., & Yang, Y. (2007). Slotted optical burst switching (SOBS) networks. Computer Communications, 30(18), 3471–3479.CrossRefGoogle Scholar
  32. 32.
    Noguchi, H., & Kamakura, K. (2008, December). Effect of one-way mode of hybrid reservation on slotted optical burst switching networks. In International symposium on information theory and its applications, 2008. ISITA 2008 (pp. 1–6). IEEE.Google Scholar
  33. 33.
    Jia, L., Fang-yuan, J., & Xiao-xiao, X. (2010, May). A dynamic routing, wavelength and timeslot assignment algorithm for WDM-TDM optical networks. In 2010 2nd international conference on future computer and communication (ICFCC) (Vol. 1, pp. V1–533). IEEE.Google Scholar
  34. 34.
    Shan, G., Zhu, G., & Liu, D. (2011). Study on the problem of routing, wavelength, and time-slot assignment towards optical time-slot switching technology. Photonic Network Communications, 22(2), 162–171.CrossRefGoogle Scholar
  35. 35.
    Donato, E., Joaquim, C. J., Antnio, V., & Ahmed, P. (2012). A proposal of dynamic RWA using ant colony in optical burst switched networks. In The proceedings of the eleventh international conference on networks (ICN 2012) (pp. 246–252).Google Scholar
  36. 36.
    Barpanda, R. S., Turuk, A. K., & Sahoo, B. (2017). QoS aware routing and wavelength allocation in optical burst switching networks using differential evolution optimization. Digital Communications and Networks, 4, 3–12.CrossRefGoogle Scholar
  37. 37.
    Gravett, A. S., du Plessis, M. C., & Gibbon, T. B. (2017). A distributed ant-based algorithm for routing and wavelength assignment in an optical burst switching flexible spectrum network with transmission impairments. Photonic Network Communications, 34(3), 375–395.CrossRefGoogle Scholar
  38. 38.
    Shuo, L. (2014). Analysis and synthesis of optical burst switched networks.Google Scholar
  39. 39.
    Battestilli, T., & Perros, H. (2003). An introduction to optical burst switching. IEEE Communications Magazine, 41(8), S10–S15.CrossRefGoogle Scholar
  40. 40.
    Teng, J., & Rouskas, G. N. (2005). Wavelength selection in OBS networks using traffic engineering and priority-based concepts. IEEE Journal on Selected Areas in Communications, 23(8), 1658–1669.CrossRefGoogle Scholar
  41. 41.
    Cao, X., Li, J., Chen, Y., & Qiao, C. (2002, November). Assembling TCP/IP packets in optical burst switched networks. In Global telecommunications conference, 2002. GLOBECOM’02. IEEE (Vol. 3, pp. 2808–2812). IEEE.Google Scholar
  42. 42.
    Rocha, J. F., Cartaxo, A. T., Silva, H. J., Pinto, J. L., Teixeira, A. L., Gameiro, A. S., et al. (2005). Optical communications research at institute of telecommunications. Fiber and Integrated Optics, 24(3–4), 411–428.CrossRefGoogle Scholar
  43. 43.
    Mitchell, M., Forrest, S., & Holland, J. H. (1992, December). The royal road for genetic algorithms: Fitness landscapes and GA performance. In Proceedings of the first European conference on artificial life (pp. 245–254).Google Scholar
  44. 44.
    Brest, J., & Maučec, M. S. (2008). Population size reduction for the differential evolution algorithm. Applied Intelligence, 29(3), 228–247.CrossRefGoogle Scholar
  45. 45.
    Qin, A. K., Huang, V. L., & Suganthan, P. N. (2009). Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation, 13(2), 398–417.CrossRefGoogle Scholar
  46. 46.
    Mininno, E., Neri, F., Cupertino, F., & Naso, D. (2011). Compact differential evolution. IEEE Transactions on Evolutionary Computation, 15(1), 32–54.CrossRefGoogle Scholar
  47. 47.
    Islam, S. M., Das, S., Ghosh, S., Roy, S., & Suganthan, P. N. (2012). An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2), 482–500.CrossRefGoogle Scholar
  48. 48.
    Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15(1), 4–31.CrossRefGoogle Scholar
  49. 49.
    Quoc, N. H., Nhat, V. V. M., & Son, N. H. (2014). Group scheduling for multi-channel in OBS networks. REV Journal on Electronics and Communications, 3(3–4), 134–137.Google Scholar
  50. 50.
    Teng, J., & Rouskas, G. N. (2005). A detailed analysis and performance comparison of wavelength reservation schemes for optical burst switched networks. Photonic Network Communications, 9(3), 311–335.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Veparala Kishen Ajay Kumar
    • 1
    Email author
  • Katam Suresh Reddy
    • 1
  • Mahendra Giri Prasad
    • 2
  1. 1.Department of Electronics and Communication EngineeringG. Pulla Reddy Engineering College (Autonomous), JNTUAKurnoolIndia
  2. 2.Department of Electronics and Communication EngineeringJNT University AnantapurAnantapuramIndia

Personalised recommendations