A Complementary Patch Loaded Epsilon Negative Artificial Material to Facilitate Miniaturization of S-Band Microwave Devices

  • Ratnesh KumariEmail author
  • Rahul Yadav
  • Piyush N. Patel


The epsilon negative materials are found to have applications in the sensor development and microwave device integration for their performance enhancement. However, their existence for S-band operation suffers from relatively large size, the characterization with the bigger dimensions waveguide or horn, and improper permeability (μ < 0) at few spectral frequencies. In this paper, a compact unit-cell design of the complementary square patch loaded artificial material is presented which exhibits a perfect epsilon negative response with μ > 0 in the microwave S-band. The numerical analysis was validated by fabricating the unit-cell structure on a Rogers isotropic thermoset microwave material of relative permittivity ɛr = 12.85 and measuring its scattering parameters spectra using 50 Ω subminiature version-A elongated probe tapping and coupling method. The measured resonance of the transmission and reflection magnitude at 2.64 GHz and 2.85 GHz show a close matching with the simulated results. The material medium parameters of the unit-cell were calculated and verified. The applicability of the proposed epsilon negative unit-cell is shown by loading it in a two-port 50 Ω microstrip line, which then excites a stop-band resonance and yet maintains a low-profile. Therefore, such an artificial material may be used to facilitate miniaturization in the microwave circuit devices.


Epsilon negative Miniaturization Probe tapping Unit-cell Wave impedance 



The authors thank to the Electronics Engineering Department, Sardar Vallabhbhai National Institute of Technology, for providing the measurement facility. They also thank Rogers Corporation, USA, for providing the free sample (TMM-13i). A special thanks to the Technical Quality Education Program, Phase-II (TEQIP-II), SVNIT-Surat, Department of Science and Technology (DST), Ministry of Human Resource and Development (MHRD), India, and Ministry of Electronics and Information Technology, Government of India which is being implemented by Digital India Corporation (formerly Media Lab Asia) for supporting this research work.


  1. 1.
    Rotaru, M., Ying, L. Y., Kuruveettil, H., et al. (2008). Implementation of packaged integrated antenna with embedded front end for bluetooth applications. IEEE Transactions on Advanced Packaging, 31(3), 558–567.CrossRefGoogle Scholar
  2. 2.
    Haddadi, K., Bakli, H., & Lasri, T. (2012). Microwave liquid sensing based on interferometry and microscopy techniques. IEEE Microwave and Wireless Components Letters, 22(10), 542–544.CrossRefGoogle Scholar
  3. 3.
    Yadav, R., & Patel, P. N. (2016). Experimental study of adulteration detection in fish oil using novel PDMS cavity bonded EBG inspired patch sensor. IEEE Sensors Journal, 16(11), 4354–4361.CrossRefGoogle Scholar
  4. 4.
    Ting, W., Xiao-Wei, S., Ping, L., et al. (2013). Tri-band microstrip-fed monopole antenna with dual-polarisation characteristics for WLAN and WiMAX applications. Electronics Letters, 49(25), 1597–1598.CrossRefGoogle Scholar
  5. 5.
    Wang, Y., & Du, Z. (2014). A printed dual-antenna system operating in the GSM1800/GSM1900/UMTS/LTE2300/LTE2500/2.4-GHz WLAN bands for mobile terminals. IEEE Antennas and Wireless Propagation Letters, 13, 233–236.CrossRefGoogle Scholar
  6. 6.
    Jiang, Z. H., Gregory, M. D., & Werner, D. H. (2016). Design and experimental investigation of a compact circularly polarized integrated filtering antenna for wearable biotelemetric devices. IEEE Transactions on Biomedical Circuits and Systems, 10(2), 328–338.CrossRefGoogle Scholar
  7. 7.
    Ahsan, M. R., Islam, M. T., & Ullah, M. H. (2015). A new biopolymer substrate-based compact monopole antenna covering RFID, WiMAX, and C/X-band. Microwave and Optical Technology Letters, 57(9), 2002–2005.CrossRefGoogle Scholar
  8. 8.
    Prasath, S. D., Balaji, S., Raju, S., Abhaikumar, V., et al. (2016). Synthesis and characterization of zinc substituted nickel ferrite materials for L band antenna applications. Journal of Materials Science: Materials in Electronics, 27(8), 8247–8253.Google Scholar
  9. 9.
    Liu, Y., Wang, H., Li, K., et al. (2015). RCS reduction of a patch array antenna based on microstrip resonators. IEEE Antennas and Wireless Propagation Letters, 14, 4–7.CrossRefGoogle Scholar
  10. 10.
    Zakharov, A. V., & Rozenko, S. A. (2012). Duplexer designed on the basis of microstrip filters using high dielectric constant substrates. Journal of Communications Technology and Electronics, 57(6), 649–655.CrossRefGoogle Scholar
  11. 11.
    Yamasaki, N. Y., Sekiya, N., Kikuchi, T., et al. (2015). Dielectric resonators as radiation detectors at low temperatures. Journal of Low Temperature Physics, 181(1), 59–67.CrossRefGoogle Scholar
  12. 12.
    Moghadasi, S. M., Attari, A. R., & Mirsalehi, M. M. (2008). Compact and wideband 1-d mushroom-like ebg filters. Progress in Electromagnetics Research, 83, 323–333.CrossRefGoogle Scholar
  13. 13.
    Gupta, A., & Chaudhary, R. K. (2016). A compact planar metamaterial triple-band antenna with complementary closed-ring resonator. Wireless Personal Communications, 88(2), 203–210.CrossRefGoogle Scholar
  14. 14.
    Dong, Y., Toyao, H., & Itoh, T. (2011). Compact circularly-polarized patch antenna loaded with metamaterial structures. IEEE Transactions on Antennas and Propagation, 59(11), 4329–4333.CrossRefGoogle Scholar
  15. 15.
    Palandöken, M., & Uçar, M. H. B. (2014). Compact metamaterial-inspired band-pass filter. Microwave and Optical Technology Letters, 56(12), 2903–2907.CrossRefGoogle Scholar
  16. 16.
    Smith, D. R., Padilla, W. J., Vier, D. C., et al. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84(18), 4184–4187.CrossRefGoogle Scholar
  17. 17.
    Smith, D. R., Pendry, J. B., & Wiltshire, M. C. K. (2004). Metamaterials and negative refractive index. Science, 305(5685), 788–792.CrossRefGoogle Scholar
  18. 18.
    Gao, X.-J., Cai, T., & Zhu, L. (2016). Enhancement of gain and directivity for microstrip antenna using negative permeability metamaterial. AEU—International Journal of Electronics and Communications, 70(7), 880–885.CrossRefGoogle Scholar
  19. 19.
    Jiang, Z. H., Gregory, M. D., & Werner, D. H. (2011). A broadband monopole antenna enabled by an ultrathin anisotropic metamaterial coating. IEEE Antennas and Wireless Propagation Letters, 10, 1543–1546.CrossRefGoogle Scholar
  20. 20.
    Unal, E., Dincer, F., Tetik, E., et al. (2015). Tunable perfect metamaterial absorber design using the golden ratio and energy harvesting and sensor applications. Journal of Materials Science: Materials in Electronics, 26(12), 9735–9740.Google Scholar
  21. 21.
    Lin, X. Q., Jin, J. Y., Jiang, Y., et al. (2013). Metamaterial-inspired waveguide filters with compact size and sharp skirt selectivity. Journal of Electromagnetic Waves and Applications, 27(2), 224–232.CrossRefGoogle Scholar
  22. 22.
    Oraizi, H., & Torabi, S. Y. (2013). Novel application of a new metamaterial complementary electric LC resonator for the design of miniaturized sharp band-pass filters. International Journal of RF and Microwave Computer-Aided Engineering, 23(4), 471–475.CrossRefGoogle Scholar
  23. 23.
    Torabi, Y., Dadashzadeh, G., & Oraizi, H. (2016). Miniaturized sharp band-pass filter based on complementary electric-LC resonator. Applied Physics A, 122(4), 273.CrossRefGoogle Scholar
  24. 24.
    Antoniades, M. A., & Eleftheriades, G. V. (2012). Multiband compact printed dipole antennas using NRI-TL metamaterial loading. IEEE Transactions on Antennas and Propagation, 60(12), 5613–5626.CrossRefGoogle Scholar
  25. 25.
    Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Soviet Physics Uspekhi, 10(4), 509–514.CrossRefGoogle Scholar
  26. 26.
    Shelby, R. A., Smith, D. R., & Schultz, S. (2001). Experimental verification of a negative index of refraction. Science, 292(5514), 77–79.CrossRefGoogle Scholar
  27. 27.
    Pendry, J. B., Schurig, D., & Smith, D. R. (2006). Controlling electromagnetic fields. Science, 312(5781), 1780–1782.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wang, R., Wang, B.-Z., Gong, Z.-S., et al. (2015). Far-field subwavelength imaging with near-field resonant metalens scanning at microwave frequencies. Scientific Reports, 5, 11131.CrossRefGoogle Scholar
  29. 29.
    Aznar, F., Gil, M., Bonache, J., et al. (2008). Modelling metamaterial transmission lines: A review and recent developments. Opto-Electronics Review, 16(3), 226–236.CrossRefGoogle Scholar
  30. 30.
    Durán-Sindreu, M., Naqui, J., Bonache, J., et al. (2012). Split rings for metamaterial and microwave circuit design: A review of recent developments (Invited paper). International Journal of RF and Microwave Computer-Aided Engineering, 22(4), 439–458.CrossRefGoogle Scholar
  31. 31.
    Falcone, F., Lopetegi, T., Baena, J. D., et al. (2004). Effective negative-/spl epsiv/stopband microstrip lines based on complementary split ring resonators. IEEE Microwave and Wireless Components Letters, 14(6), 280–282.CrossRefGoogle Scholar
  32. 32.
    Luo, X., Qian, H., Ma, J., et al. (2010). Wideband bandpass filter with excellent selectivity using new CSRR-based resonator. Electronics Letters, 46(20), 1390–1391.CrossRefGoogle Scholar
  33. 33.
    Duran-Sindreu, M., Velez, P., Bonache, J., et al. (2011). Broadband microwave filters based on open split ring resonators (OSRRs) and open complementary split ring resonators (OCSRRs): Improved models and design optimization. Radioengineering, 20(4), 775–783.Google Scholar
  34. 34.
    Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S. F., et al. (2014). Dual-mode behavior of the complementary electric-LC resonators loaded on transmission line: Analysis and applications. Journal of Applied Physics, 116(8), 083705.CrossRefGoogle Scholar
  35. 35.
    Naqui, J., Durán-Sindreu, M., & Martín, F. (2013). Differential and single-ended microstrip lines loaded with slotted magnetic-LC resonators. International Journal of Antennas and Propagation, 2–13, 1–8.CrossRefGoogle Scholar
  36. 36.
    Machac, J., Rytir, M., Protiva, P., et al. (2008). A double H-shaped resonator for an isotropic ENG metamaterial. In 38th European microwave conference EuMC 2008 (pp. 1–4).Google Scholar
  37. 37.
    Yurduseven, O., Yilmaz, A. E., & Turhan-Sayan, G. (2011). Triangular-shaped single-loop resonator: A triple-band metamaterial with MNG and ENG regions in S/C bands. IEEE Antennas and Wireless Propagation Letters, 10, 701–704.CrossRefGoogle Scholar
  38. 38.
    Muzeeb, S., Rajesh, G. S., & Kumar, V. (2016). Design of a qudruple band printed monopole antenna using ENG metamaterial antenna. In 2016 IEEE international conference on recent trends in electronics, information & communication technology (RTEICT) (pp. 2144–2148).Google Scholar
  39. 39.
    Booket, M. R., Jafargholi, A., Kamyab, M., et al. (2012). Compact multi-band printed dipole antenna loaded with single-cell metamaterial. IET Microwaves, Antennas and Propagation, 6(1), 17–23.CrossRefGoogle Scholar
  40. 40.
    Ferdous, S., Hossain, A., Chowdhury, S. M. H., et al. (2013). Reduced and conventional size multi-band circular patch antennas loaded with metamaterials. IET Microwaves, Antennas and Propagation, 7(9), 768–776.CrossRefGoogle Scholar
  41. 41.
    Hossain, M. A., Ferdous, M. S., Chowdhury, S. M. H., et al. (2014). Novel dual band microstrip circular patch antennas loaded with ENG and MNG metamaterials. International Journal of Antennas and Propagation, 2014, 9.CrossRefGoogle Scholar
  42. 42.
    Islam, S. S., Rashed Iqbal Faruque, M., & Tariqul Islam, M. (2016). An ENG metamaterial based wideband electromagnetic cloak. Microwave and Optical Technology Letters, 58(10), 2522–2525.CrossRefGoogle Scholar
  43. 43.
    Kumari, R., & Patel, P. N. (2016). A low-cost dielectric spectroscopic system using metamaterial open horn-ring resonator-inspired BSF and detection circuitry. Applied Physics A, 122(7), 711.CrossRefGoogle Scholar
  44. 44.
    Schneider, M. V. (1969). Microstrip lines for microwave integrated circuits. Bell System Technical Journal, 48(5), 1421–1444.CrossRefGoogle Scholar
  45. 45.
    Gupta, K. C., Garge, R., Bahl, I., & Bhartis, P. (1996). Microstrip lines and slotlines (2nd ed., pp. 1–560). Boston: Artech House.Google Scholar
  46. 46.
    Wadell, B. C. (1991). Transmission line design handbook (pp. 196–200). Boston: Artech House.Google Scholar
  47. 47.
    Chen, H., Zhang, J., Bai, Y., et al. (2006). Experimental retrieval of the effective parameters of metamaterials based on a waveguide method. Optics Express, 14(26), 12944–12949.CrossRefGoogle Scholar
  48. 48.
    Hasar, U. C., Barroso, J. J., & Ertugrul, M. (2012). Permeability measurement of split-ringresonator metamaterials from free-space transmission-only calibration-independent methods. Journal of Electromagnetic Waves and Applications, 26(1), 54–63.CrossRefGoogle Scholar
  49. 49.
    Wagner, N., Schwing, M., & Scheuermann, A. (2014). Numerical 3-D FEM and experimental analysis of the open-ended coaxial line technique for microwave dielectric spectroscopy on soil. IEEE Transactions on Geoscience and Remote Sensing, 52(2), 880–893.CrossRefGoogle Scholar
  50. 50.
    Marsland, T. P., & Evans, S. (1987). Dielectric measurements with an open-ended coaxial probe. IEE Proceedings H—Microwaves, Antennas and Propagation, 134(4), 341–349.CrossRefGoogle Scholar
  51. 51.
    Szabo, Z., Park, G. H., Hedge, R., et al. (2010). A unique extraction of metamaterial parameters based on Kramers–Kronig relationship. IEEE Transactions on Microwave Theory and Techniques, 58(10), 2646–2653.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electronic Engineering DepartmentSardar Vallabhbhai National Institute of TechnologyIchchhanath, SuratIndia

Personalised recommendations