Advertisement

Adaptive Resource Allocation for WiMAX Mesh Network

  • Mahboubeh AfzaliEmail author
  • Kamalrulnizam AbuBakar
  • Jaime Lloret
Article

Abstract

Worldwide Interoperability for Microwave Access is a technology used to enable fast and cost-effective network deployment as well as facilitating multimedia based services and applications available to the users. However, Interference constitutes a major constraint in the widespread use of shared resources for interaction among devices. In this paper, a greedy resource allocation mechanism, which consists of Learning Automata based Greedy Channel Assignment and Learning Automata based Greedy Centralized Scheduling algorithms, is presented to cope with interference as well as to improve spatial reuse in the resource allocation mechanism. Finally, the simulation results demonstrate that our proposed algorithms outperform existing approaches.

Keywords

WiMAX mesh network Resource allocation Channel assignment Centralized scheduling 

Notes

References

  1. 1.
    IEEE Std. p802.16rev2/d2. (2007). IEEE standard for local and metropolitan area networks—Part 16: Air interface for fixed broadband wireless access systems.Google Scholar
  2. 2.
    Rambabu, K., Kunwar, A., & Gautam, A. K. (2016). Design of a compact U-shaped slot triple band antenna for WLAN/WiMAX applications. International Journal of Electronics and Communications, 71, 82–88.Google Scholar
  3. 3.
    Lubobya, S. C., Dlodlo, M. E., De Jager, G., & Zulu, A. (2015). Throughput characteristics of WiMAX video surveillance systems. Procedia Computer Science, 45, 571–580.CrossRefGoogle Scholar
  4. 4.
    Singh, J., Kansal, L., & Sharma, V. (2016). Performance evaluation of FFT-WiMAX against WHT-WiMAX over Rayleigh fading channel. Optik, 127, 4514–4519.CrossRefGoogle Scholar
  5. 5.
    Son, L. H., & Thong, P. H. (2016). Soft computing methods for WiMAX network planning on 3D geographical information systems. Journal of Computer and System Sciences, 83, 159–179.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Afzali, M., AbuBakar, K., Zrar Ghafoor, K., Lloret, J., & Karamoozian, A. (2015). Improving the communication path reliability of WiMAX mesh network using multi sponsor technique. Telecommunication Systems, 60(1), 133–141.CrossRefGoogle Scholar
  7. 7.
    Du, P., Jia, W., Huang, L., & Lu, W. (2007). Centralized scheduling and channel assignment in multi-channel single-transceiver WiMAX mesh network. In IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings (pp. 1734–1739).Google Scholar
  8. 8.
    Han, B., Jia, W., & Lin, L. (2007). Performance evaluation of scheduling in IEEE 802.16 based wireless mesh networks. Computer Communications, 30(4), 782–792.CrossRefGoogle Scholar
  9. 9.
    Liao, W. H., Kedia, S. P., & Dubey, A. K. (2012). Scheduling and channel assignment algorithm for IEEE 802.16 mesh networks using clique partitioning technique. Computer Communications, 35(16), 2025–2034.CrossRefGoogle Scholar
  10. 10.
    Brahmia, M. A., Syarif, A., Abouaissa, A., Idoumghar, L., & Lorenz, P. (2014). An efficient study of scheduling algorithms with Freidman test in WiMAX networks. Network Protocols and Algorithms, 6(4), 41–59.CrossRefGoogle Scholar
  11. 11.
    Mardini, W., & Alfool, M. A. (2011). Modified WRR scheduling algorithm for WiMAX networks. Network Protocols and Algorithms, 3(2), 24–53.CrossRefGoogle Scholar
  12. 12.
    Han, B., Tso, F. P., Lin, L., & Jia, W. (2006). Performance evaluation of scheduling in IEEE 802.16 based wireless mesh networks. In IEEE international conference on mobile adhoc and sensor systems (MASS) (pp. 789–794).Google Scholar
  13. 13.
    Shetiya, H., & Sharma, V. (2005). Algorithms for routing and centralized scheduling to provide QOS in IEEE 802.16 mesh networks. In Proceedings of ACM workshop on wireless multimedia networking and performance modeling (WMuNeP ’05) (pp. 140–149), October 2005.Google Scholar
  14. 14.
    Jin, F., Arora, A., Hwang, J., & Choi, H. A. (2007). Routing and packet scheduling for throughput maximization in IEEE 802.16 mesh networks. In Proceedings of IEEE broadband communications, networks and systems (BROADNETS) (pp. 574–582).Google Scholar
  15. 15.
    Wei, H. Y., Ganguly, S., Izmailov, R., & Hass, Z. J. (2005). Interference-aware IEEE 802.16 WiMAX mesh networks. In Proceedings of 61th IEEE vehicular technology conference (VTC Spring) (vol. 5, pp. 3102–3106), June 2005.Google Scholar
  16. 16.
    Wang, J., Jia, W., & Huang, L. (2008). An efficient centralized scheduling algorithm for IEEE 802.16 multi-radio mesh networks. In Proceedings of international conference on ubiquitous information management and, communication (ICUIMC ’08) (pp. 1–5).Google Scholar
  17. 17.
    Xiong, Q., Jia, W., & Wu, C. (2007). Packet scheduling bidirectional using concurrent transmission in WiMAX mesh networks. In International conference on wireless communications, networking and mobile computing ( WiCom) (pp. 2037–2040), September 2007.Google Scholar
  18. 18.
    Fu, L., Cao, Z., & Fan, P. (2005). Spatial reuse in IEEE 802.16 based wireless mesh networks. In IEEE international symposium on communications and information technology (ISCIT) (vol. 2, pp. 1358–1361), October 2005.Google Scholar
  19. 19.
    Chen, L. W., Tseng, D. W., Wang, Y. C., & Wu, J. J. (2007). Exploiting spectral reuse in resource allocation, scheduling, and routing for IEEE 802.16 mesh networks. In Proceeding of 66th IEEE vehicular technology conference (VTC-2007 Fall) (pp. 1608–1612), September 2007.Google Scholar
  20. 20.
    Chen, L. W., Wang, Y. C., Tseng, Y. C., Wang, D. W., & Wu, J. J. (2009). Exploiting spectral reuse in routing, resource allocation, and scheduling for IEEE 802.16 mesh networks. IEEE Transactions on Vehicular Technology, 58(1), 301–313.CrossRefGoogle Scholar
  21. 21.
    Cao, Y., Liu, Z., & Yang, Y. (2006). A centralized scheduling algorithm based on multi-path routing in WiMAX mesh network. In International conference on wireless communications, networking and mobile computing (WiCOM) (pp. 1–4).Google Scholar
  22. 22.
    Kahlon, Akashdeep K. S., & Kumar, H. (2014). Survey of scheduling algorithms in IEEE 802.16 PMP networks. Egyptian Informatics Journal, 15(1), 25–36.CrossRefGoogle Scholar
  23. 23.
    Fu, L., & Cao, Z. (2006). Joint optimization of routing and scheduling for higher throughput in IEEE 802.16 mesh networks. In Proceedings of 2006 IET international conference on wireless, mobile and multimedia networks (pp. 1–4).Google Scholar
  24. 24.
    Liu, S., Feng, S., Ye, W., & Zhuang, H. (2009). Slot allocation algorithms in centralized scheduling scheme for IEEE 802.16 based wireless mesh networks. Computer Communications, 32(5), 943–953.CrossRefGoogle Scholar
  25. 25.
    Al-Hemyari, A., Ng, C. K., Noordin, N. K., Ismail, A., & Khatun, S. (2008). Constructing routing tree for centralized scheduling using multi-channel single transceiver system in 802.16 mesh mode. In IEEE international RF and microwave conference (pp. 192–196).Google Scholar
  26. 26.
    Tao, J., Liu, F., Zeng, Z., & Lin, Z. (2005). Throughput enhancement in WiMAX mesh networks using concurrent transmission. Proceedings of Wireless Communications, Networking and Mobile Computing, 2, 871–874.Google Scholar
  27. 27.
    Kim, D., & Ganz, A. (2005). Fair and efficient multihop scheduling algorithm for IEEE 802.16 BWA systems. In 2nd international conference on broadband networks, 2005. BroadNets (pp. 833–839), October 2005.Google Scholar
  28. 28.
    Chiu, Y., Chang, C. J., Feng, K. T., & Ren, F. C. (2010). Ggra: A feasible resource-allocation scheme by optimization technique for IEEE 802.16 uplink systems. IEEE Transactions on Vehicular Technology, 59(3), 1393–1401.CrossRefGoogle Scholar
  29. 29.
    Gunasekaran, R., Siddharth, S., Krishnaraj, P., Kalaiarasan, M., & Uthariaraj, V. R. (2010). Efficient algorithms to solve broadcast scheduling problem in WiMAX mesh networks. Computer Communications, 33, 1325–1333.CrossRefGoogle Scholar
  30. 30.
    Tang, Y., Yao, Y., & Lin, X. (2009). A joint centralized scheduling and channel assignment scheme in WiMAX mesh networks. In Proceedings of the 2009 international conference on wireless communications and mobile computing: Connecting the world wirelessly (pp. 552–556), ACM.Google Scholar
  31. 31.
    Xiao, J., Xiong, N., & Vasilakos, A. V. (2009). Centralized scheduling and channel assignment scheme in third generation router based WiMAX mesh network. In Proceedings of international conference on wireless communications and mobile computing: Connecting the world wirelessly (pp. 721–725).Google Scholar
  32. 32.
    Jensen, R., & Toft, B. (2005). Graph coloring problems. New York: Wiley.zbMATHGoogle Scholar
  33. 33.
    Barrett, C. L., Istrate, G., Kumar, V. S. A., Marathe, M. V., Thite, S., & Thulasidasan, S. (2006). Strong edge coloring for channel assignment in wireless radio networks. In Proceedings of 4th IEEE international conference on pervasive computing and communications (PerCom) workshop( pp. 5–10), March 2006.Google Scholar
  34. 34.
    Riihijarvi, J., Petrova, M., & Mahonen, P. (2005). Frequency allocation for WLANs using graph coloring techniques. In Proceedings of conference on wireless on demand network systems and services (WONS) (pp. 216–222), Jan 2005.Google Scholar
  35. 35.
    Ostergard, P. R. J. (1999). A new algorithm for the maximum-weight clique problem. Electronic Notes in Discrete Mathematics, 3, 153–156.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Ostergard, P. R. J. (2001). A new algorithm for the maximum-weight clique problem. Nordic Journal of Computing, 8(4), 424–436.MathSciNetGoogle Scholar
  37. 37.
    Kim, J. T., & Shi, D. R. (2002). New efficient clique partitioning algorithms for register transfer synthesis of data paths. Journal of the Korean Physical Society, 40(4), 754–758.CrossRefGoogle Scholar
  38. 38.
    Al-Hemyari, A., Noordin, N. K., Kyun, N. C., Ismail, A., & Khatun, S. (2009). Centralized routing and scheduling using multi-channel system single transceiver in 802.16d. In ADHOCNETS (pp. 316–332).Google Scholar
  39. 39.
    Al-Hemyari, A., Noordin, N. K., Ng, C. K., Ismail, A., & Khatun, S. (2010). Centralized routing and scheduling using multi-channel system single transceiver in 802.16d. Springer.Google Scholar
  40. 40.
    Chang, C. J., Chiu, Y., Feng, K. T., & Ren, F. C. (2010). Ggra: A feasible resource allocation scheme by optimization technique for IEEE 802.16 uplink systems. In Wireless communications and networking (WCNC) (pp. 1–6).Google Scholar
  41. 41.
    Kumar, D. D. N. P., Raghavan, S., Murugesan, K., & Suganthi, M. (2011). Neural network based scheduling algorithm for WiMAX with improved QOS constraints. In International conference on emerging trends in electrical and computer technology (ICETECT) (pp. 1076–1081).Google Scholar
  42. 42.
    Railean, I., Stolojescu, C., Moga, S., & Lenca, S. (2012). WiMAX traffic forecasting based on neural networks in wavelet domain. In Fourth international conference on research challenges in information science (RCIS) (pp. 443–452).Google Scholar
  43. 43.
    Ning, Z., Guo, L., Peng, Y., & Wang, X. (2012). Joint scheduling and routing algorithm with load balancing in wireless mesh network. Computers and Electrical Engineering, 38(3), 533–550.CrossRefGoogle Scholar
  44. 44.
    Zaki, A., & Fapojuwo, A. (2011). Optimal and efficient graph-based resource allocation algorithms for multi-service frame-based ofdma networks. IEEE Transactions on Mobile Computing, 10(8), 1175–1186.CrossRefGoogle Scholar
  45. 45.
    Mohammadi, A., Aki, G. S., & Behnamfar, F. (May 2009). Optimal linear-time QOS based scheduling for WiMAX. In Proceedings of Canadian conference on electrical and computer engineering (pp. 1811–1814), May 2009.Google Scholar
  46. 46.
    Lloret, J., Canovas, A., Rodrigues, J. J. P. C., & Lin, K. (2013). A network algorithm for 3D/2D iptvdistribution using WiMAX and WLAN technologies. Multimedia Tools and Applications, 67(1), 7–30.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mahboubeh Afzali
    • 1
    Email author
  • Kamalrulnizam AbuBakar
    • 1
  • Jaime Lloret
    • 2
  1. 1.Faculty of Computer Science and Information Systems, Department of Communication and Computer SystemsUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Instituto de Investigacion para la Gestion Integrada de zonas CosterasUniversitat Politecnica de ValenciaValenciaSpain

Personalised recommendations