Advertisement

Applicability of Wireless Sensor Networks in Precision Agriculture: A Review

  • Divyansh Thakur
  • Yugal KumarEmail author
  • Arvind Kumar
  • Pradeep Kumar Singh
Article
  • 72 Downloads

Abstract

Presently, wireless sensor network (WSN) plays important role in engineering, science, agriculture and many other field like surveillance, military applications, smart cars etc. Precision agriculture (PA) is one of the field in which WSN is widely adopted. The aim of the adoption of WSNs in PA is to measure the different environmental parameters such as humidity, temperature, soil moisture, PH value of soil etc., for enhancing the quantity and quality of crops. Further, the WSNs are also helped to reduce the consumptions of the natural resources used in farming. Hence, the aim of this review is to identify the various WSNs technologies adopted for precision agriculture and impact of these technologies to achieve smart agriculture. This review also focuses on the different environmental parameters like irrigation, monitoring, soil properties, temperature for achieving precision agriculture. Further, a detailed study is also carried out on different crops which are covered using WSNs technologies. This review also highlights on the different communication technologies and sensors available for PA. To analyze the impact of the WSNs in agriculture field, several research questions are designed and through this review, we are tried to find the solutions of these research questions.

Keywords

Wireless sensor network Precision agriculture Sensors Monitoring Irrigation 

Abbreviations

APTEEN

Adaptive periodic threshold-sensitive energy efficient sensor network protocol

AMSR-E

Advanced microwave scanning radiometer for the earth observing system

ASCAT

Advanced scatterometer

BOP

Beacon only period

CMOS

Complementary metal–oxide–semiconductor

CSMA

Carrier-sense multiple access

DCTA

Dynamic converge cast tree algorithm

DEEC

Distributed energy efficient clustering

DGNSS

Differential global navigation satellite system

DSSS

Direct-sequence spread spectrum

ECA

Electrical conductivity

ECHERP

Equalized cluster head election routing protocol

EEHC

Energy efficient hierarchical clustering

EMI

Electromagnetic induction

FHSS

Frequency-hopping spread spectrum

GFSK

Gaussian frequency shift keying

GIS

Geographical information system

GPRS

General packet radio service

GPS

Global positioning system

IC

Integrated circuit

IEEE

Institute of Electrical and Electronics Engineers

IOT

Internet of thing

IRT

Interactive response technology

LAA

Last address assignment

LLC

Logical link control layer

MAC

Media access control address

MC

Moisture content

MIR

Mid-infrared

MLR

Multiple regression analysis

NIR

Near-infrared spectroscopy

NS2

Network simulator 2

OASNDFA

Optimized algorithm of sensor node deployment for intelligent agricultural monitoring

OC

Organic carbon

OFDM

Orthogonal frequency-division multiplexing

OGC

Open Geospatial Consortium

OS

Operating system

PA

Precision agriculture

PCR

Principal component regression

pH

Potential of hydrogen

PIR Sensor

Passive infrared sensor

PLSR

Partial least squares regression

PRI

Polarization ratio index

PRR

Packet reception ratio

RBHR

Region-based hybrid routing protocol

RF

Radio frequency

RIFD

Radio frequency identification

RIMCS

Remote irrigation monitoring and control system

RQ

Research question

RSSI

Received signal strength indicator)

SBC

Single board computer

SCI

Science citation index

SMSS

Soil moisture sensor system

SNDCP

Sub network dependent convergence protocol

SoC

System on chip

SQL

Structured Query Language

SWE

Sensor Web Enablement

TC

Canopy temperature

TDR

Time-domain reflectometer

TDT

Time domain transmissometry

TN

Total nitrogen

UAV

Unmanned-aircraft vehicle

URI

Uniform Resource Identifier

USB

Universal Serial Bus

vis–NIR

Visible near infrared

VRI

Variable rate irrigation

Wi-Fi

Wireless fidelity

WiMAX

Worldwide Interoperability for microwave access

WISC

Wireless in-field sensing and control

WSAN

Wireless sensor and actuator network

WSN

Wireless sensor network

WUSNs

Wireless underground sensor networks

Notes

References

  1. 1.
    Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.Google Scholar
  2. 2.
    Baronti, P., Pillai, P., Chook, V. W., Chessa, S., Gotta, A., & Hu, Y. F. (2007). Wireless sensor networks: A survey on the state of the art and the and the 802.15.4 ZigBee standards. Computer Communications, 30(7), 1655–1695.Google Scholar
  3. 3.
    Kutter, T., Tiemann, S., Siebert, R., & Fountas, S. (2011). The role of communication and co-operation in the adoption of precision farming. Precision Agriculture, 12(1), 2–17.Google Scholar
  4. 4.
    Polo, J., Hornero, G., Duijneveld, C., García, A., & Casas, O. (2015). Design of a low-cost wireless sensor network with UAV mobile node for agricultural applications. Computers and Electronics in Agriculture, 119, 19–32.Google Scholar
  5. 5.
    Abbasi, A. Z., Islam, N., & Shaikh, Z. A. (2014). A review of wireless sensors and networks’ applications in agriculture. Computer Standards & Interfaces, 36(2), 263–270.Google Scholar
  6. 6.
    Garcia-Sanchez, A. J., Garcia-Sanchez, F., & Garcia-Haro, J. (2011). Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and Electronics in Agriculture, 75(2), 288–303.Google Scholar
  7. 7.
    Zhang, R., Ren, Z., Sun, J., Tang, W., Ning, D., & Qian, Y. (2017). Method for monitoring the cotton plant vigor based on the WSN technology. Computers and Electronics in Agriculture, 133, 68–79.Google Scholar
  8. 8.
    Sai, Z., Fan, Y., Yuliang, T., Lei, X., & Yifong, Z. (2016). Optimized algorithm of sensor node deployment for intelligent agricultural monitoring. Computers and Electronics in Agriculture, 127, 76–86.Google Scholar
  9. 9.
    Jiang, J. A., Wang, C. H., Liao, M. S., Zheng, X. Y., Liu, J. H., Chuang, C. L., et al. (2016). A wireless sensor network-based monitoring system with dynamic convergecast tree algorithm for precision cultivation management in orchid greenhouses. Precision Agriculture, 17(6), 766–785.Google Scholar
  10. 10.
    Kim, Y. D., Yang, Y. M., Kang, W. S., & Kim, D. K. (2014). On the design of beacon based wireless sensor network for agricultural emergency monitoring systems. Computer Standards & Interfaces, 36(2), 288–299.Google Scholar
  11. 11.
    Bapat, V., Kale, P., Shinde, V., Deshpande, N., & Shaligram, A. (2017). WSN application for crop protection to divert animal intrusions in the agricultural land. Computers and Electronics in Agriculture, 133, 88–96.Google Scholar
  12. 12.
    Portz, G., Molin, J. P., & Jasper, J. (2012). Active crop sensor to detect variability of nitrogen supply and biomass on sugarcane fields. Precision Agriculture, 13(1), 33–44.Google Scholar
  13. 13.
    Reiser, D., Paraforos, D. S., Khan, M. T., Griepentrog, H. W., & Vázquez-Arellano, M. (2017). Autonomous field navigation, data acquisition and node location in wireless sensor networks. Precision Agriculture, 18(3), 279–292.Google Scholar
  14. 14.
    Smiljkovikj, K., & Gavrilovska, L. (2014). SmartWine: Intelligent end-to-end cloud-based monitoring system. Wireless Personal Communications, 78(3), 1777–1788.Google Scholar
  15. 15.
    Díaz, S. E., Pérez, J. C., Mateos, A. C., Marinescu, M. C., & Guerra, B. B. (2011). A novel methodology for the monitoring of the agricultural production process based on wireless sensor networks. Computers and Electronics in Agriculture, 76(2), 252–265.Google Scholar
  16. 16.
    Zhu, B., Han, W., Wang, Y., Wang, N., Chen, Y., & Guo, C. (2014). Development and evaluation of a wireless sensor network monitoring system in various agricultural environments. Journal of Microwave Power and Electromagnetic Energy, 48(3), 170–183.Google Scholar
  17. 17.
    Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297–307.Google Scholar
  18. 18.
    Yu, X., Wu, P., Han, W., & Zhang, Z. (2013). A survey on wireless sensor network infrastructure for agriculture. Computer Standards & Interfaces, 35(1), 59–64.Google Scholar
  19. 19.
    Abouzar, P., Michelson, D. G., & Hamdi, M. (2016). RSSI-based distributed self-localization for wireless sensor networks used in precision agriculture. IEEE Transactions on Wireless Communications, 15(10), 6638–6650.Google Scholar
  20. 20.
    El-Kader, S. M. A., & El-Basioni, B. M. M. (2013). Precision farming solution in Egypt using the wireless sensor network technology. Egyptian Informatics Journal, 14(3), 221–233.Google Scholar
  21. 21.
    Georgieva, T., Paskova, N., Gaazi, B., Todorov, G., & Daskalov, P. (2016). Design of wireless sensor network for monitoring of soil quality parameters. Agriculture and Agricultural Science Procedia, 10, 431–437.Google Scholar
  22. 22.
    Kaiwartya, O., Abdullah, A. H., Cao, Y., Raw, R. S., Kumar, S., Lobiyal, D. K., et al. (2016). T-MQM: Testbed-based multi-metric quality measurement of sensor deployment for precision agriculture—A case study. IEEE Sensors Journal, 16(23), 8649–8664.Google Scholar
  23. 23.
    Tan Lam, P., Le Quang, T., Le Nguyen, N., & Dat Nguyen, S. (2018). Wireless sensing modules for rural monitoring and precision agriculture applications. Journal of Information and Telecommunication, 2(1), 107–123.Google Scholar
  24. 24.
    An, W., Ci, S., Luo, H., Wu, D., Adamchuk, V., Sharif, H., et al. (2015). Effective sensor deployment based on field information coverage in precision agriculture. Wireless Communications and Mobile Computing, 15(12), 1606–1620.Google Scholar
  25. 25.
    Lee, W. S., & Ehsani, R. (2015). Sensing systems for precision agriculture in Florida. Computers and Electronics in Agriculture, 112, 2–9.Google Scholar
  26. 26.
    Valente, J., Sanz, D., Barrientos, A., Cerro, J. D., Ribeiro, Á., & Rossi, C. (2011). An air-ground wireless sensor network for crop monitoring. Sensors, 11(6), 6088–6108.Google Scholar
  27. 27.
    Zhang, Z., Wu, P., Han, W., & Yu, X. (2017). Remote monitoring system for agricultural information based on wireless sensor network. Journal of the Chinese Institute of Engineers, 40(1), 75–81.Google Scholar
  28. 28.
    Li, X. H., Cheng, X., Yan, K., & Gong, P. (2010). A monitoring system for vegetable greenhouses based on a wireless sensor network. Sensors, 10(10), 8963–8980.Google Scholar
  29. 29.
    Park, D. H., & Park, J. W. (2011). Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention. Sensors, 11(4), 3640–3651.Google Scholar
  30. 30.
    Mesas-Carrascosa, F. J., Santano, D. V., Meroño, J. E., de la Orden, M. S., & García-Ferrer, A. (2015). Open source hardware to monitor environmental parameters in precision agriculture. Biosystems Engineering, 137, 73–83.Google Scholar
  31. 31.
    Gutiérrez, J., Villa-Medina, J. F., Nieto-Garibay, A., & Porta-Gándara, M. Á. (2014). Automated irrigation system using a wireless sensor network and GPRS module. IEEE Transactions on Instrumentation and Measurement, 63(1), 166–176.Google Scholar
  32. 32.
    Levy, D., Coleman, W. K., & Veilleux, R. E. (2013). Adaptation of potato to water shortage: irrigation management and enhancement of tolerance to drought and salinity. American Journal of Potato Research, 90(2), 186–206.Google Scholar
  33. 33.
    Hedley, C. B., Roudier, P., Yule, I. J., Ekanayake, J., & Bradbury, S. (2013). Soil water status and water table depth modelling using electromagnetic surveys for precision irrigation scheduling. Geoderma, 199, 22–29.Google Scholar
  34. 34.
    Navarro-Hellín, H., Torres-Sánchez, R., Soto-Valles, F., Albaladejo-Pérez, C., López-Riquelme, J. A., & Domingo-Miguel, R. (2015). A wireless sensors architecture for efficient irrigation water management. Agricultural Water Management, 151, 64–74.Google Scholar
  35. 35.
    Nolz, R., Kammerer, G., & Cepuder, P. (2013). Calibrating soil water potential sensors integrated into a wireless monitoring network. Agricultural Water Management, 116, 12–20.Google Scholar
  36. 36.
    Viani, F., Bertolli, M., Salucci, M., & Polo, A. (2017). Low-cost wireless monitoring and decision support for water saving in agriculture. IEEE Sensors Journal, 17(13), 4299–4309.Google Scholar
  37. 37.
    Kim, Y., Evans, R. G., & Iversen, W. M. (2008). Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Transactions on Instrumentation and Measurement, 57(7), 1379–1387.Google Scholar
  38. 38.
    Zhao, W., Li, J., Yang, R., & Li, Y. (2018). Determining placement criteria of moisture sensors through temporal stability analysis of soil water contents for a variable rate irrigation system. Precision Agriculture, 19(4), 648–665.Google Scholar
  39. 39.
    Chávez, J. L., Pierce, F. J., Elliott, T. V., Evans, R. G., Kim, Y., & Iversen, W. M. (2010). A remote irrigation monitoring and control system (RIMCS) for continuous move systems. Part B: Field testing and results. Precision Agriculture, 11(1), 11–26.Google Scholar
  40. 40.
    Maurya, S., & Jain, V. K. (2016). Fuzzy based energy efficient sensor network protocol for precision agriculture. Computers and Electronics in Agriculture, 130, 20–37.Google Scholar
  41. 41.
    Sawant, S., Durbha, S. S., & Jagarlapudi, A. (2017). Interoperable agro-meteorological observation and analysis platform for precision agriculture: A case study in citrus crop water requirement estimation. Computers and Electronics in Agriculture, 138, 175–187.Google Scholar
  42. 42.
    Kim, Y., & Evans, R. G. (2009). Software design for wireless sensor-based site-specific irrigation. Computers and Electronics in Agriculture, 66(2), 159–165.Google Scholar
  43. 43.
    Coates, R. W., Delwiche, M. J., Broad, A., & Holler, M. (2013). Wireless sensor network with irrigation valve control. Computers and Electronics in Agriculture, 96, 13–22.Google Scholar
  44. 44.
    Nikolidakis, S. A., Kandris, D., Vergados, D. D., & Douligeris, C. (2015). Energy efficient automated control of irrigation in agriculture by using wireless sensor networks. Computers and Electronics in Agriculture, 113, 154–163.zbMATHGoogle Scholar
  45. 45.
    Nagarajan, G., & Minu, R. I. (2018). Wireless soil monitoring sensor for sprinkler irrigation automation system. Wireless Personal Communications, 98(2), 1835–1851.Google Scholar
  46. 46.
    Goumopoulos, C., O’Flynn, B., & Kameas, A. (2014). Automated zone-specific irrigation with wireless sensor/actuator network and adaptable decision support. Computers and Electronics in Agriculture, 105, 20–33.Google Scholar
  47. 47.
    Kim, Y., Schmid, T., Charbiwala, Z. M., Friedman, J., & Srivastava, M. B. (2008). NAWMS: Nonintrusive autonomous water monitoring system. In Proceedings of the 6th ACM conference on embedded network sensor systems (pp. 309–322). ACM.Google Scholar
  48. 48.
    Masseroni, D., Facchi, A., Depoli, E. V., Renga, F. M., & Gandolfi, C. (2016). Irrig-OH: An open-hardware device for soil water potential monitoring and irrigation management. Irrigation and Drainage, 65(5), 750–761.Google Scholar
  49. 49.
    Wong, B. P., & Kerkez, B. (2016). Real-time environmental sensor data: An application to water quality using web services. Environmental Modelling and Software, 84, 505–517.Google Scholar
  50. 50.
    Lozoya, C., Mendoza, C., Aguilar, A., Román, A., & Castelló, R. (2016). Sensor-based model driven control strategy for precision irrigation. Journal of Sensors, 2016, 9784071.  https://doi.org/10.1155/2016/9784071.Google Scholar
  51. 51.
    Rossel, R. A. V., & Bouma, J. (2016). Soil sensing: A new paradigm for agriculture. Agricultural Systems, 148, 71–74.Google Scholar
  52. 52.
    Bernardi, A. D. C., Bettiol, G. M., Ferreira, R. D. P., Santos, K. E. L., Rabello, L. M., & Inamasu, R. Y. (2016). Spatial variability of soil properties and yield of a grazed alfalfa pasture in Brazil. Precision Agriculture, 17(6), 737–752.Google Scholar
  53. 53.
    Kuang, B., & Mouazen, A. M. (2013). Effect of spiking strategy and ratio on calibration of on-line visible and near infrared soil sensor for measurement in European farms. Soil and Tillage Research, 128, 125–136.Google Scholar
  54. 54.
    Pedrera-Parrilla, A., Van De Vijver, E., Van Meirvenne, M., Espejo-Pérez, A. J., Giráldez, J. V., & Vanderlinden, K. (2016). Apparent electrical conductivity measurements in an olive orchard under wet and dry soil conditions: significance for clay and soil water content mapping. Precision Agriculture, 17(5), 531–545.Google Scholar
  55. 55.
    Fu, W., Tunney, H., & Zhang, C. (2010). Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil and Tillage Research, 106(2), 185–193.Google Scholar
  56. 56.
    Bogena, H. R., Huisman, J. A., Oberdörster, C., & Vereecken, H. (2007). Evaluation of a low-cost soil water content sensor for wireless network applications. Journal of Hydrology, 344(1–2), 32–42.Google Scholar
  57. 57.
    Knadel, M., Thomsen, A., Schelde, K., & Greve, M. H. (2015). Soil organic carbon and particle sizes mapping using vis–NIR, EC and temperature mobile sensor platform. Computers and Electronics in Agriculture, 114, 134–144.Google Scholar
  58. 58.
    Li, Z., Wang, N., Franzen, A., Taher, P., Godsey, C., Zhang, H., et al. (2014). Practical deployment of an in-field soil property wireless sensor network. Computer Standards & Interfaces, 36(2), 278–287.Google Scholar
  59. 59.
    Ritsema, C. J., Kuipers, H., Kleiboer, L., Van Den Elsen, E., Oostindie, K., Wesseling, J. G., et al. (2009). A new wireless underground network system for continuous monitoring of soil water contents. Water resources research, 45(4), 1–9.Google Scholar
  60. 60.
    Majone, B., Viani, F., Filippi, E., Bellin, A., Massa, A., Toller, G., et al. (2013). Wireless sensor network deployment for monitoring soil moisture dynamics at the field scale. Procedia Environmental Sciences, 19, 426–435.Google Scholar
  61. 61.
    Kizito, F., Campbell, C. S., Campbell, G. S., Cobos, D. R., Teare, B. L., Carter, B., et al. (2008). Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. Journal of Hydrology, 352(3–4), 367–378.Google Scholar
  62. 62.
    Cardenas-Lailhacar, B., & Dukes, M. D. (2010). Precision of soil moisture sensor irrigation controllers under field conditions. Agricultural Water Management, 97(5), 666–672.Google Scholar
  63. 63.
    Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., et al. (2011). Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sensing of Environment, 115(12), 3390–3408.Google Scholar
  64. 64.
    Ge, Y., Thomasson, J. A., & Sui, R. (2011). Remote sensing of soil properties in precision agriculture: A review. Frontiers of Earth Science, 5(3), 229–238.Google Scholar
  65. 65.
    Vuran, M. C., & Akyildiz, I. F. (2010). Channel model and analysis for wireless underground sensor networks in soil medium. Physical Communication, 3(4), 245–254.Google Scholar
  66. 66.
    Badia-Melis, R., Garcia-Hierro, J., Ruiz-Garcia, L., Jiménez-Ariza, T., Villalba, J. I. R., & Barreiro, P. (2014). Assessing the dynamic behavior of WSN motes and RFID semi-passive tags for temperature monitoring. Computers and Electronics in Agriculture, 103, 11–16.Google Scholar
  67. 67.
    Green, O., Nadimi, E. S., Blanes-Vidal, V., Jørgensen, R. N., Storm, I. M. D., & Sørensen, C. G. (2009). Monitoring and modeling temperature variations inside silage stacks using novel wireless sensor networks. Computers and Electronics in Agriculture, 69(2), 149–157.Google Scholar
  68. 68.
    Jahnavi, V. S., & Ahamed, S. F. (2015). Smart wireless sensor network for automated greenhouse. IETE Journal of Research, 61(2), 180–185.Google Scholar
  69. 69.
    Jackson, T., Mansfield, K., Saafi, M., Colman, T., & Romine, P. (2008). Measuring soil temperature and moisture using wireless MEMS sensors. Measurement, 41(4), 381–390.Google Scholar
  70. 70.
    Martínez, J., Egea, G., Agüera, J., & Pérez-Ruiz, M. (2017). A cost-effective canopy temperature measurement system for precision agriculture: a case study on sugar beet. Precision Agriculture, 18(1), 95–110.Google Scholar
  71. 71.
    Pierce, F. J., & Elliott, T. V. (2008). Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington. Computers and Electronics in Agriculture, 61(1), 32–43.Google Scholar
  72. 72.
    Mahan, J. R., Conaty, W., Neilsen, J., Payton, P., & Cox, S. B. (2010). Field performance in agricultural settings of a wireless temperature monitoring system based on a low-cost infrared sensor. Computers and Electronics in Agriculture, 71(2), 176–181.Google Scholar
  73. 73.
    Mendez, G. R., & Mukhopadhyay, S. C. (2013). A Wi-Fi based smart wireless sensor network for an agricultural environment. In Wireless sensor networks and ecological monitoring (pp. 247–268). Springer, Berlin.Google Scholar
  74. 74.
    Zhang, J., Li, W., Han, N., & Kan, J. (2008). Forest fire detection system based on a ZigBee wireless sensor network. Frontiers of Forestry in China, 3(3), 369–374.Google Scholar
  75. 75.
    Versichele, M., Neutens, T., Delafontaine, M., & Van de Weghe, N. (2012). The use of Bluetooth for analysing spatiotemporal dynamics of human movement at mass events: A case study of the Ghent Festivities. Applied Geography, 32(2), 208–220.Google Scholar
  76. 76.
    Leroy, D., Detal, G., Cathalo, J., Manulis, M., Koeune, F., & Bonaventure, O. (2011). SWISH: Secure WiFi sharing. Computer Networks, 55(7), 1614–1630.Google Scholar
  77. 77.
    Gu, Q. H., Lu, C. W., Li, F. B., & Wan, C. Y. (2008). Monitoring dispatch information system of trucks and shovels in an open pit based on GIS/GPS/GPRS. Journal of China University of Mining and Technology, 18(2), 288–292.Google Scholar
  78. 78.
    Gungor, V. C., & Lambert, F. C. (2006). A survey on communication networks for electric system automation. Computer Networks, 50(7), 877–897.Google Scholar
  79. 79.
  80. 80.
  81. 81.
  82. 82.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringJaypee University of Information TechnologyWaknaghat, SolanIndia

Personalised recommendations