Advertisement

Wireless Personal Communications

, Volume 106, Issue 1, pp 219–235 | Cite as

Blockchain Paradigm and Internet of Things

  • Valentin Rakovic
  • Jovan Karamachoski
  • Vladimir Atanasovski
  • Liljana GavrilovskaEmail author
Article
  • 171 Downloads

Abstract

Blockchain (BC) represents a distributed ledger technology that has been utilized for providing security and privacy in distributed networks. This makes it applicable to the distributed nature of IoT, which still suffers from privacy and security vulnerabilities. However, the core BC technology is computationally expensive and commonly involves high bandwidth overhead and delays not suitable for IoT related scenarios. In order to foster the synergy between BC and IoT, recent research advancements have specifically focused on developing novel BC approaches that are tailored to the requirements and needs of the specific IoT use cases. The paper elaborates the BC–IoT related issues and provides a comprehensive survey of the current literature and relevant initiated deployments. The paper also identifies the key research and development challenges and discusses the possible aspects for future research.

Keywords

Blockchain Internet of things Distributed ledger 

Notes

References

  1. 1.
    Stellios, I., Kotzanikolaou, P., Psarakis, M., Alcaraz, C., & Lopez, J. (2018). A survey of iot-enabled cyberattacks: Assessing attack paths to critical infrastructures and services. IEEE Communications Surveys Tutorials, 20, 3453–3495.CrossRefGoogle Scholar
  2. 2.
    Liang, G., Weller, S. R., Luo, F., Zhao, J., & Dong, Z. Y. (2018). Distributed blockchain-based data protection framework for modern power systems against cyber attacks. IEEE Transactions on Smart Grid.  https://doi.org/10.1109/TSG.2018.2819663.Google Scholar
  3. 3.
    Karamachoski, J., Gavrilovska, L., & Sefidanoski, A. (2018). The fusion between blockchain and iot for healthcare systems. In ETAI Conference, ETAI ’18 (pp. 1–6).Google Scholar
  4. 4.
    Mishra, A. K., Tripathy, A. K., Puthal, D., & Yang, L. T. (2018). Analytical model for sybil attack phases in internet of things. IEEE Internet of Things Journal, 6, 379–387.CrossRefGoogle Scholar
  5. 5.
    Singh, A., Ngan, T., Druschel, P., & Wallach, D. S. (2006). Eclipse attacks on overlay networks: Threats and defenses. In Proceedings IEEE INFOCOM 2006. 25th IEEE international conference on computer communications (pp. 1–12).  https://doi.org/10.1109/INFOCOM.2006.231.
  6. 6.
    Natoli, C., & Gramoli, V. (2016). The balance attack against proof-of-work blockchains: The R3 testbed as an example. arXiv:abs/1612.09426.
  7. 7.
    Conti, M., Kumar, E. S., Lal, C., & Ruj, S. (2018). A survey on security and privacy issues of bitcoin. IEEE Communications Surveys Tutorials, 20, 3416–3452.  https://doi.org/10.1109/COMST.2018.2842460.CrossRefGoogle Scholar
  8. 8.
    Gervais, A., Karame, G. O., Wüst, K., Glykantzis, V., Ritzdorf, H., & Capkun, S. (2016). On the security and performance of proof of work blockchains. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, CCS ’16 (pp. 3–16). New York, NY: ACM.  https://doi.org/10.1145/2976749.2978341.
  9. 9.
    Duong, T., Chepurnoy, A., Fan, L., & Zhou, H. S. (2018). Twinscoin: A cryptocurrency via proof-of-work and proof-of-stake. In Proceedings of the 2Nd ACM workshop on blockchains, cryptocurrencies, and contracts, BCC ’18 (pp. 1–13). New York, NY: ACM.  https://doi.org/10.1145/3205230.3205233.
  10. 10.
    Christidis, K., & Devetsikiotis, M. (2016). Blockchains and smart contracts for the internet of things. IEEE Access, 4, 2292–2303.  https://doi.org/10.1109/ACCESS.2016.2566339.CrossRefGoogle Scholar
  11. 11.
    Kang, J., Xiong, Z., Niyato, D., Wang, P., Ye, D., & Kim, D. I. (2018). Incentivizing consensus propagation in proof-of-stake based consortium blockchain networks. IEEE Wireless Communications Letters, 8, 157–160.  https://doi.org/10.1109/LWC.2018.2864758.CrossRefGoogle Scholar
  12. 12.
    Tschorsch, F., & Scheuermann, B. (2016). Bitcoin and beyond: A technical survey on decentralized digital currencies. IEEE Communications Surveys Tutorials, 18(3), 2084–2123.  https://doi.org/10.1109/COMST.2016.2535718.CrossRefGoogle Scholar
  13. 13.
    Sousa, J., Bessani, A., & Vukolic, M. (2018). A byzantine fault-tolerant ordering service for the hyperledger fabric blockchain platform. In 2018 48th annual IEEE/IFIP international conference on dependable systems and networks (DSN) (pp. 51–58).  https://doi.org/10.1109/DSN.2018.00018.
  14. 14.
    Cachin, C., & Vukolic, M. (2017). Blockchain consensus protocols in the wild. arXiv:abs/1707.01873.
  15. 15.
    Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017). An overview of blockchain technology: Architecture, consensus, and future trends. In 2017 IEEE international congress on big data (bigdata congress) (pp. 557–564).  https://doi.org/10.1109/BigDataCongress.2017.85.
  16. 16.
    Armknecht, F., Karame, G. O., Mandal, A., Youssef, F., & Zenner, E. (2015). Ripple: Overview and outlook. In M. Conti, M. Schunter, & I. Askoxylakis (Eds.), Trust and Trustworthy Computing (pp. 163–180). Cham: Springer.CrossRefGoogle Scholar
  17. 17.
    Sedgewick, P. E., & de Lemos, R. (2018). Self-adaptation made easy with blockchains. In: Proceedings of the 13th international conference on software engineering for adaptive and self-managing systems, SEAMS ’18 (pp. 192–193). New York, NY: ACM.  https://doi.org/10.1145/3194133.3194150.
  18. 18.
    Mohanty, S., & Vyas, S. (2018). Decentralized autonomous organizations = Blockchain + AI + IoT (pp. 189–206). Berkeley, CA: Apress.  https://doi.org/10.1007/978-1-4842-3808-0_9.Google Scholar
  19. 19.
    Pahl, C., El Ioini, N., & Helmer, S. (2018). A decision framework for blockchain platforms for IoT and edge computing. In IoTBDS (pp. 105–113).Google Scholar
  20. 20.
    Yeow, K., Gani, A., Ahmad, R. W., Rodrigues, J. J. P. C., & Ko, K. (2018). Decentralized consensus for edge-centric internet of things: A review, taxonomy, and research issues. IEEE Access, 6, 1513–1524.  https://doi.org/10.1109/ACCESS.2017.2779263.CrossRefGoogle Scholar
  21. 21.
    Liao, C., Bao, S., Cheng, C., & Chen, K. (2017). On design issues and architectural styles for blockchain-driven iot services. In 2017 IEEE international conference on consumer electronics-Taiwan (ICCE-TW) (pp. 351–352).  https://doi.org/10.1109/ICCE-China.2017.7991140.
  22. 22.
    Sharma, P. (2018). Blockchain based hybrid network architecture for the smart city. Future Generation Computer Systems, 86, 650–655.CrossRefGoogle Scholar
  23. 23.
    Vo, H. T., Kundu, A., & Mohania, M. K. (2018). Research directions in blockchain data management and analytics. In EDBT (pp. 445–448).Google Scholar
  24. 24.
    Yu, X. L., Xu, X., & Liu, B. (2017). EthDrive: A peer-to-peer data storage with provenance. In CAiSE-Forum-DC (pp. 25–32).Google Scholar
  25. 25.
    Xu, Q., Aung, K. M. M., Zhu, Y., & Yong, K. L. (2018). A blockchain-based storage system for data analytics in the internet of things (pp. 119–138). Cham: Springer.Google Scholar
  26. 26.
    Steger, M., Dorri, A., Kanhere, S. S., Römer, K., Jurdak, R., & Karner, M. (2018). Secure wireless automotive software updates using blockchains: A proof of concept. In C. Zachäus, B. Müller, & G. Meyer (Eds.), Advanced Microsystems for Automotive Applications 2017 (pp. 137–149). Cham: Springer.CrossRefGoogle Scholar
  27. 27.
    Alvarenga, I. D., Rebello, G. A. F., & Duarte, O. C. M. B. (2018). Securing configuration management and migration of virtual network functions using blockchain. In NOMS 2018–2018 IEEE/IFIP network operations and management symposium (pp. 1–9).  https://doi.org/10.1109/NOMS.2018.8406249.
  28. 28.
    Lee, J. (2018). Patch transporter: Incentivized, decentralized software patch system for WSN and IoT environments. Sensors, 18(2), 574.CrossRefGoogle Scholar
  29. 29.
    Leiba, O., Yitzchak, Y., Bitton, R., Nadler, A., & Shabtai, A. (2018). Incentivized delivery network of iot software updates based on trustless proof-of-distribution. In 2018 IEEE European symposium on security and privacy workshops (EuroSPW) (pp. 29–39).Google Scholar
  30. 30.
    Azzar, A., & Mottola, L. (2015). Virtual resources for the internet of things. In 2015 IEEE 2nd world forum on internet of things (WF-IoT) (pp. 245–250).  https://doi.org/10.1109/WF-IoT.2015.7389060.
  31. 31.
    Xiong, Z., Zhang, Y., Niyato, D., Wang, P., & Han, Z. (2018). When mobile blockchain meets edge computing. IEEE Communications Magazine, 56(8), 33–39.  https://doi.org/10.1109/MCOM.2018.1701095.CrossRefGoogle Scholar
  32. 32.
    Samaniego, M., & Deters, R. (2017). Internet of smart things-iost: Using blockchain and clips to make things autonomous. In 2017 IEEE international conference on cognitive computing (ICCC) (pp. 9–16).  https://doi.org/10.1109/IEEE.ICCC.2017.9.
  33. 33.
    Vermesan, O., Bröring, A., Tragos, E., Serrano, M., Bacciu, D., Chessa, S., et al. (2017). Internet of robotic things: Converging sensing/actuating, hypoconnectivity, artificial intelligence and iot platforms. Cognitive Hyperconnected Digital Transformation: Internet of Things Intelligence Evolution, 1, 1–35.Google Scholar
  34. 34.
    Ferrer, E. C. (2016). The blockchain: A new framework for robotic swarm systems. arXiv:abs/1608.00695.
  35. 35.
    Golomb, T., Mirsky, Y., & Elovici, Y. (2018). Ciota: Collaborative iot anomaly detection via blockchain. arXiv:abs/1803.03807.
  36. 36.
    Hashemi, S. H., Faghri, F., & Campbell, R. H. (2017). Decentralized user-centric access control using pubsub over blockchain. arXiv:abs/1710.00110.
  37. 37.
    Novo, O. (2018). Blockchain meets iot: An architecture for scalable access management in iot. IEEE Internet of Things Journal, 5(2), 1184–1195.  https://doi.org/10.1109/JIOT.2018.2812239.CrossRefGoogle Scholar
  38. 38.
    Zhang, Y., Kasahara, S., Shen, Y., Jiang, X., & Wan, J. (2018). Smart contract-based access control for the internet of things. arXiv:abs/1802.04410.
  39. 39.
    Xu, R., Chen, Y., Blasch, E., & Chen, G. (2018). Blendcac: A blockchain-enabled decentralized capability-based access control for iots. arXiv:abs/1804.09267.
  40. 40.
    Dukkipati, C., Zhang, Y., & Cheng, L. C. (2018). Decentralized, blockchain based access control framework for the heterogeneous internet of things. In Proceedings of the third ACM workshop on attribute-based access control, ABAC’18 (pp. 61–69). New York, NY: ACM.  https://doi.org/10.1145/3180457.3180458.
  41. 41.
    Atlam, H. F., Alenezi, A., Walters, R. J., Wills, G. B., & Daniel, J. (2017). Developing an adaptive risk-based access control model for the internet of things. In 2017 IEEE international conference on internet of things (iThings) and IEEE green computing and communications (GreenCom) and IEEE cyber, physical and social computing (CPSCom) and ieee smart data (SmartData) (pp. 655–661).  https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.103.
  42. 42.
    Outchakoucht, A., ES-Samaali, H., & Philippe, J. (2017). Dynamic access control policy based on blockchain and machine learning for the internet of things. International Journal of Advanced Computer Science and Applications, 8, 417–424.CrossRefGoogle Scholar
  43. 43.
    Khan, M. A., & Salah, K. (2018). Iot security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82, 395–411.  https://doi.org/10.1016/j.future.2017.11.022.CrossRefGoogle Scholar
  44. 44.
    Sharma, P. K., Singh, S., Jeong, Y., & Park, J. H. (2017). Distblocknet: A distributed blockchains-based secure sdn architecture for iot networks. IEEE Communications Magazine, 55(9), 78–85.  https://doi.org/10.1109/MCOM.2017.1700041.CrossRefGoogle Scholar
  45. 45.
    Ferreira Jesus, E., Chicarino, R. L. V., Albuquerque, C., & de Rocha, A. (2018). A survey of how to use blockchain to secure internet of things and the stalker attack. Security and Communication Networks, 2018, 1–27.CrossRefGoogle Scholar
  46. 46.
    Xia, Q., Sifah, E. B., Smahi, A., Amofa, S., & Zhang, X. (2017). Bbds: Blockchain-based data sharing for electronic medical records in cloud environments. Information, 8(2).  https://doi.org/10.3390/info8020044. http://www.mdpi.com/2078-2489/8/2/44.
  47. 47.
    Al Omar, A., Rahman, M. S., Basu, A., & Kiyomoto, S. (2017). Medibchain: A blockchain based privacy preserving platform for healthcare data. In G. Wang, M. Atiquzzaman, Z. Yan, & K. K. R. Choo (Eds.), Security, Privacy, and Anonymity in Computation, Communication, and Storage (pp. 534–543). Cham: Springer.CrossRefGoogle Scholar
  48. 48.
    Angeletti, F., Chatzigiannakis, I., & Vitaletti, A. (2017). Privacy preserving data management in recruiting participants for digital clinical trials (pp. 7–12).Google Scholar
  49. 49.
    Dorri, A., Kanhere, S. S., Jurdak, R., & Gauravaram, P. (2017). Blockchain for iot security and privacy: The case study of a smart home. In 2017 IEEE international conference on pervasive computing and communications workshops (PerCom workshops) (pp. 618–623).  https://doi.org/10.1109/PERCOMW.2017.7917634.
  50. 50.
    Collen, A., Nijdam, N. A., Augusto-Gonzalez, J., Katsikas, S. K., Giannoutakis, K. M., Spathoulas, G., et al. (2018). Ghost-safe-guarding home iot environments with personalised real-time risk control. In E. Gelenbe, P. Campegiani, T. Czachórski, S. K. Katsikas, I. Komnios, L. Romano, & D. Tzovaras (Eds.), Security in Computer and Information Sciences (pp. 68–78). Cham: Springer.CrossRefGoogle Scholar
  51. 51.
    Gao, F., Zhu, L., Shen, M., Sharif, K., Wan, Z., & Ren, K. (2018). A blockchain-based privacy-preserving payment mechanism for vehicle-to-grid networks. IEEE Network, 99, 1–9.  https://doi.org/10.1109/MNET.2018.1700269.Google Scholar
  52. 52.
    Dorri, A., Steger, M., Kanhere, S. S., & Jurdak, R. (2017). Blockchain: A distributed solution to automotive security and privacy. IEEE Communications Magazine, 55(12), 119–125.  https://doi.org/10.1109/MCOM.2017.1700879.CrossRefGoogle Scholar
  53. 53.
    Mylrea, M., & Gourisetti, S. N. G. (2017). Blockchain for smart grid resilience: Exchanging distributed energy at speed, scale and security. In 2017 resilience week (RWS) (pp. 18–23).  https://doi.org/10.1109/RWEEK.2017.8088642.
  54. 54.
  55. 55.
  56. 56.
  57. 57.
  58. 58.
    Drops, I. https://icodrops.com. Accessed on 5 December 2018.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and Information TechnologiesSs Cyril and Methodius University in SkopjeSkopjeMacedonia
  2. 2.Faculty of Machine Intelligence and RoboticsUniversity for Information Science and Technology - St. Paul the ApostleOhridMacedonia

Personalised recommendations