Advertisement

Wireless Personal Communications

, Volume 106, Issue 1, pp 237–260 | Cite as

Vehicular Channels: Characteristics, Models and Implications on Communication Systems Design

  • José A. Cortés
  • Mari Carmen Aguayo-TorresEmail author
  • Francisco J. Cañete
  • Gerardo Gómez
  • Eduardo Martos-Naya
  • J. Tomás Entrambasaguas
Article
  • 102 Downloads

Abstract

The application of information and communication technologies to road transportation systems can significantly improve safety and traffic flow. This requires setting up vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication links. Two technologies, based on the IEEE 802.11p and on the long-term evolution for vehicular communications (LTE-V) standards, have been proposed for this purpose. This paper analyzes the relation between the characteristics of vehicular communication channels and the parameters of the referred systems, with particular emphasis on the physical and medium access control layers. To this end, the primary factors that influence V2V and V2I channels and their main characteristics are firstly described. Illustrative results for a highway scenario, as well as a summary of the channel parameters reported in the literature, are given. The employed modeling approaches are then reviewed and representative examples of the two foremost strategies are provided. The key parameters of the IEEE 802.11p and LTE-V physical layers are then summarized and its suitability to deal with the time and frequency selectivity of vehicular channels is compared. Distortion caused by the time variation of the channel is examined and design challenges related to important aspects like synchronization, multiple access interference and channel estate information estimation are discussed.

Keywords

Channel characterization Channel model Vehicle-to-everything communications OFDM IEEE 802.11p LTE-V 

Notes

References

  1. 1.
    European Commission. (2010). Directive 2010/40/EU of the European Parliament and of the Council of 7 july 2010 on the framework for the deployment of intelligent transport systems in the field of road transport and for interfaces with other modes of transport.Google Scholar
  2. 2.
    Eurostat. (2018). Persons killed in road accidents by type of road (CARE data). Available online https://goo.gl/6f9cVT. Accessed 23 oct 2018.
  3. 3.
    Department of Transportation. (2018). ITS Joint Program Office, Connected vehicle benefits. Available online https://www.its.dot.gov/factsheets/pdf/connectedvehiclebenefits.pdf. Accessed 23 oct 2018.
  4. 4.
    McGiffen, T. G., Beiker, S., & Paulraj, A. (2017). Motivating network deployment: Vehicular communications. IEEE Vehicular Technology Magazine, 12(3), 22–33.CrossRefGoogle Scholar
  5. 5.
    IEEE standard for information technology—telecommunications and information exchange between systems local and metropolitan area networks—specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012) (2016).Google Scholar
  6. 6.
    Intelligent Transport System (ITS). (2011). European profile standard for the physical and medium access control layer of ITS operating in the 5 GHz frequency band. ETSI ES 202 663.Google Scholar
  7. 7.
    3rd Generation Partnership Project. (2017). Evolved universal terrestrial radio access (e-utra) and evolved universal terrestrial radio access network (e-utran); overall description; stage 2. 3GPP TS 36.300, Release 14.Google Scholar
  8. 8.
    3rd Generation Partnership Project. (2017). Study on enhancement of 3GPP support for 5G V2X services. 3GPP TR 22.886, Release 15.Google Scholar
  9. 9.
    Qualcomm. (2018). V2x technology benchmark testing, available online https://www.qualcomm.com/media/documents/files/5gaa-v2x-technology-benchmark-testing-dsrc-and-c-v2x.pdf. Accessed 24 oct 2018.
  10. 10.
    Molish, A. F., Tufvesson, F., Karedal, J., & Mecklenbräuker, C. F. (2009). A survey on vehicle-to-vehicle propagation channels. IEEE Wireless Communications, 16(6), 12–22.CrossRefGoogle Scholar
  11. 11.
    Mecklenbräuker, C. F., Molish, A. F., Karedal, J., Tufvesson, F., Paier, A., Bernadó, L., et al. (2011). Vehicular channel characterization and its implications for wireless system design and performance. Proceedings of the IEEE, 99(7), 1189–1212.CrossRefGoogle Scholar
  12. 12.
    Viriyasitavat, W., Boban, M., Tsai, A. V., & Vasilakos, H.-M. (2015). Vehicular communications: Survey and challenges of channel and propagation models. IEEE Vehicular Technology Magazine, 10(2), 55–66.CrossRefGoogle Scholar
  13. 13.
    Steinbauer, M., Molisch, A. F., & BonekI, E. (2001). The double-directional radio channel. IEEE Antennas and Propagation Magazine, 43(4), 51–63.CrossRefGoogle Scholar
  14. 14.
    Karedal, J., Tufvesson, F., Czink, N., Paier, A., Dumard, C., Zemen, T., et al. (2009). A Geometry-based stochastic MIMO model for vehicle-to-vehicle communications. IEEE Transactions on Wireless Communications, 8(7), 3646–3657.CrossRefGoogle Scholar
  15. 15.
    Reichardt, L., Fügen, T., & Zwick, T. (2009). Influence of antennas placement on car to car communications channel. In Proceedings of the European conference on antennas and propagation.Google Scholar
  16. 16.
    Klemp, O. (2010). Performance considerations for automotive antenna equipment in vehicle-to-vehicle communications. In Proceedings of the URSI international symposium on electromagnetic theory.Google Scholar
  17. 17.
    Boban, M., Meireles, R., Barros, J., Tonguz, & O., Steenkiste, P. (2011). Exploiting the height of vehicles in vehicular communication. In Proceedings of the IEEE vehicular networking conference (pp. 163–170).Google Scholar
  18. 18.
    Goldsmith, A. (2005). Wireless communications. New York: Cambridge University Press.CrossRefGoogle Scholar
  19. 19.
    Cheng, L., Henty, B. E., Stancil, D. D., Bai, F., & Mudalige, P. (2007). Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band. IEEE Journal on Selected Areas in Communications, 25(8), 1501–1516.CrossRefGoogle Scholar
  20. 20.
    Renaudin, O., Kolmonen, V.-M., Vainikainen, P., & Oestges, C. (2008). Wideband MIMO car-to-car radio channel measurements at 5.3 GHz. In Proceedings of the IEEE vehicular technology conference.Google Scholar
  21. 21.
    Boban, M., Barros, J., & Tonguz, O. K. (2014). Geometry-based vehicle-to-vehicle channel modeling for large-scale simulation. IEEE Transactions on Vehicular Technology, 63(9), 4146–4164.CrossRefGoogle Scholar
  22. 22.
    Kunisch, J., Pamp, J. (2008). Wideband car-to-car radio channel measurements and model at 5.9 GHz. In Proceedings of the IEEE vehicular technology conference.Google Scholar
  23. 23.
    Paier, A., Karedal, J., Czink, N., Dumard, C., Zemen, T., Tufvesson, F., et al. (2009). Characterization of vehicle-to-vehicle radio channels from measurements at 5.2 GHz. Wireless Personal Communications, 50(1), 19–32.CrossRefGoogle Scholar
  24. 24.
    Cheng, L., Henty, B.E., Bai, F., & Stancil, D.D. (2008). Highway and rural propagation channel modeling for vehicle-to-vehicle communications at 5.9 GHz. In Proceedings of the IEEE antennas and propagation society international symposium.Google Scholar
  25. 25.
    Karedal, J., Czink, N., Paier, A., Tufvesson, F., & Molisch, A. F. (2011). Path Loss modeling for vehicle-to-vehicle communications. IEEE Transactions on Vehicular Technology, 60(1), 323–328.CrossRefGoogle Scholar
  26. 26.
    Matz, G. (2005). On non-WSSUS wireless fading channels. IEEE Transactions on Wireless Communications, 4(5), 2465–2478.CrossRefGoogle Scholar
  27. 27.
    Bernadó, L., Zemen, T., Tufvesson, F., Molisch, A. F., & Mecklenbräuker, C. F. (2014). Delay and Doppler Spreads of nonstationary vehicular channels for safety-relevant scenarios. IEEE Transactions on Vehicular Technology, 63(1), 82–93.CrossRefGoogle Scholar
  28. 28.
    Czink, N., Kaltenberger, F., Zhou, Y., Bernadó, L., Zemen, T., Yin, X. (2010). Low-complexity geometry-based modeling of diffuse scattering. In Proceedings of the fourth European conference on antennas and propagation.Google Scholar
  29. 29.
    Molish, A. F. (2011). Wireless communications (2nd ed.). New York: Wiley.Google Scholar
  30. 30.
    Tan, I., Tang, W., Laberteaux, K., & Bahai, A. (2008). Measurement and analysis of wireless channel impairments in DSRC vehicular communications. In Proceedings of the IEEE international communications conference (ICC).Google Scholar
  31. 31.
    Cheng, L., Henty, G., Cooper, R., Stancil, D.D., Bai, F. (2008). Multi-path propagation measurements for vehicular networks at 5.9 GHz. In Proceedings of the IEEE wireless communications and networking conference.Google Scholar
  32. 32.
    Sen, I., & Matolak, D. W. (2008). Vehicle-vehicle channel models for the 5-GHz band. IEEE Transactions on Intelligent Transportation Systems, 9(2), 235–245.CrossRefGoogle Scholar
  33. 33.
    Jaeckel, S., Raschkowski, L., Borner, K., & Thiele, L. (2014). QuaDRiGa: A 3-D multi-cell channel model with time evolution for enabling virtual field trials. IEEE Transactions on Antennas and Propagation, 62(6), 3242–3256.CrossRefGoogle Scholar
  34. 34.
    Maurer, J., Fugen, T., Porebska, M., Zwick, T., & Wiesbeck, W. (2008). A ray-optical channel model for mobile to mobile communications. In Proceedings of the 4th MCM COST 2100.Google Scholar
  35. 35.
    Matolak, D. (2008). Channel modeling for vehicle-to-vehicle communications. IEEE Communications Magazine, 46(5), 76–8.CrossRefGoogle Scholar
  36. 36.
    Geometry-based, efficient propagation model for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication. [Online] Accessed 24 Oct 2018.Google Scholar
  37. 37.
    Matolak, D. W. (2014). Modeling the vehicle-to-vehicle propagation channel: A review. Radio Science, 49(9), 721–736.CrossRefGoogle Scholar
  38. 38.
    Bernado, L., Zemen, T., Tufvesson, F., Molisch, A. F., & Mecklenbrauker, C. F. (2015). Time- and frequency-varying -factor of non-stationary vehicular channels for safety-relevant scenarios. IEEE Transactions on Intelligent Transportation Systems, 16(2), 1007–1017.CrossRefGoogle Scholar
  39. 39.
    Chen, S., Hu, J., Shi, Y., Peng, Y., Fang, J., Zhao, R., et al. (2017). Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G. IEEE Communications Standards Magazine, 1(2), 70–76.CrossRefGoogle Scholar
  40. 40.
    Hu, J., Chen, S., Zhao, L., Li, Y., Fang, J., Li, B., et al. (2017). Link level performance comparison between LTE V2X and DSRC. Journal of Communications and Information Networks, 2(2), 101–112.CrossRefGoogle Scholar
  41. 41.
    Filippi, A., Moerman, K., Martinez, V., Turley, A., Haran, O., & Toledano, R. (2017). IEEE802.11p ahead of LTE-V2V for safety applications. Technical report, NXP Semiconductors, Autotalks.Google Scholar
  42. 42.
    Molina-Masegosa, R., & Gozalvez, J. (2017). LTE-V for sidelink 5G V2X vehicular communications: A new 5G technology for short-range vehicle-to-everything communications. IEEE Vehicular Technology Magazine, 12(4), 30–39.CrossRefGoogle Scholar
  43. 43.
    Aguayo-Torres, M.C., & Entrambasaguas, J.T. (2001). Efficiency upper bound for adaptive OFDM in multipath frequency selective fading channels. In Proceedings of the international conference on telecommunications (ICT) (pp. 449–454).Google Scholar
  44. 44.
    Ma, M., Huang, X., & Guo, Y. J. (2010). An interference self-cancellation technique for SC-FDMA systems. IEEE Communications Letters, 14(6), 512–514.CrossRefGoogle Scholar
  45. 45.
    Mahamadu, M. A., Wu, J., Ma, Z., Zhou, W., Tang, Y., & Fan, P. (2018). Fundamental tradeoff between Doppler diversity and channel estimation errors in SIMO high mobility communication systems. IEEE Access, 6, 21867–21878.CrossRefGoogle Scholar
  46. 46.
    3GPP RAN meeting document R1-163029. (2016). DM-RS enhancements for V2V PSCCH and PSSCH. Technical report, Qualcomm.Google Scholar
  47. 47.
    Xu, Z., Li, X., Zhao, X., Zhang, M., & Wang, Z. (2017). DSRC versus 4G-LTE for connected vehicle applications: A study on field experiments of vehicular communication performance. Journal of Advanced Transportation, 2017, 1–10.Google Scholar
  48. 48.
    Li, Y., Wen, M., Cheng, X., & Yang, L. (Feb 2016). Index modulated OFDM with ICI self-cancellation for V2X communications. In 2016 International conference on computing, networking and communications (ICNC) (pp. 1–5).Google Scholar
  49. 49.
    Ma, T. (2018). ICI suppressing scheme in OFDM systems over multipath fading channels. Electronics Letters, 54(20), 1191–1193.CrossRefGoogle Scholar
  50. 50.
    Jiansheng, H., Zuxun, S., Shuxia, G., Qian, Z., & Dongdong, S. (2018). Sparse channel recovery with inter-carrier interference self-cancellation in OFDM. Journal of Systems Engineering and Electronics, 29(4), 676–683.Google Scholar
  51. 51.
    Nemati, M., & Arslan, H. (2017). Low ICI symbol boundary alignment for 5G numerology design. IEEE Access, 6, 2356–2366.CrossRefGoogle Scholar
  52. 52.
    Raghunath, K., & Chockalingam, A. (2009). SC-FDMA versus OFDMA: Sensitivity to large carrier frequency and timing offsets on the uplink. In Proceedings of IEEE global telecommunications conference (Globecom), Honolulu (EEUU).Google Scholar
  53. 53.
    Martin-Sacristan, D., Herranz, C., & Monserrat, J.F. (2017). Traffic safety in the METIS-II 5G connected cars use case: technology enablers and baseline evaluation. In Proceedings of the European conference on networks and communications (EuCNC), Oulu (pp. 1–5).Google Scholar
  54. 54.
    Schwarz, S., Philosof, T., & Rupp, M. (2017). Signal processing challenges in cellular-assisted vehicular communications: Efforts and developments within 3GPP LTE and beyond. IEEE Signal Processing Magazine, 34(2), 47–59.CrossRefGoogle Scholar
  55. 55.
    Campolo, C., Molinaro, A., & Berthet, A. (2018). 5G-and-beyond V2X technologies and enablers: Standards, research and solutions. Tutorial at IEEE Wireless Communications and Networking Conference (WCNC).Google Scholar
  56. 56.
    Chen, Y., Wang, L., Ai, Y., Jiao, B., & Hanzo, L. (2019). NOMA in vehicular communications (pp. 333–366). Cham: Springer.Google Scholar
  57. 57.
    Lien, S., Shieh, S., Huang, Y., Su, B., Hsu, Y., & Wei, H. (2017). 5G new radio: Waveform, frame structure, multiple access, and initial access. IEEE Communications Magazine, 55(6), 64–71.CrossRefGoogle Scholar
  58. 58.
    Jeon, J. (2018). NR wide bandwidth operations. IEEE Communications Magazine, 56(3), 42–46.CrossRefGoogle Scholar
  59. 59.
    3GPP RAN meeting document R1-166939. (2016). Numerology evaluation results for high speed scenario. Technical report, ETRI.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dpto. Ingeniería de ComunicacionesUniversidad de MálagaMálagaSpain

Personalised recommendations