Advertisement

Reconfigurable Sea-Water Based Reflectarray Antenna for UHF Applications

  • Saber Helmy Zainud-Deen
  • Hend Abd El-Azem MalhatEmail author
  • Marwa Mohamed Abdelbary
Article
  • 25 Downloads

Abstract

High efficiency sea-water based reflectarray antenna for maritime wireless communications at 740 MHz is introduced in this paper. The proposed reflectarray consists of 169 unit-cell elements with area of 330.2 × 330.2 cm2. Each unit-cell element consists of a cylindrical dielectric container filled with sea-water and is mounted on a conducting plate. It introduces a reflection phase variation from 0 to 313 degrees. The reflectarray is designed and analyzed using the finite integral technique and compared with that calculated using the finite element method. The radiation characteristics of 13 × 13 sea-water based reflectarray are investigated and presented. The main beam direction of the sea-water based reflectarray is controlled by the water level in each unit-cell element through an electronic valves. The reflectarray introduces a maximum gain of 26.2 dB at 740 MHz and 1-dB gain bandwidth of 50 MHz The effect of temperature variation on the electrical properties of sea-water material and their effect on the radiation characteristics of the water-based reflectarray are introduced.

Keywords

Water antenna Reflectarray Beam-steering 

Notes

References

  1. 1.
    Kosta, Y. (2004). Liquid antenna. IEEE AP-S International Symposium Digest, 3, 2392–2395.Google Scholar
  2. 2.
    Xing, L., Huang, Y., Xu, Q., & Alja’afreh, S.S. (2015). Overview of water antenna designs for wireless communications. In IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), pp. 233–234, June 2015.Google Scholar
  3. 3.
    Xing, L. (2015). Investigations of water-based liquid antennas for wireless communications, Ph.D. thesis University of Liverpool, UK.Google Scholar
  4. 4.
    Klein, L., & Swift, C. T. (1977). An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Transactions on Antennas and Propagation, 25(1), 104–111.CrossRefGoogle Scholar
  5. 5.
    Hua, C., Shen, Z., & Lu, J. (2014). High-efficiency sea-water monopole antenna for maritime wireless communications. IEEE Transactions on Antennas and Propagation, 62(12), 5968–5973.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Rongguo, Z., Zhang, H., & Xin, H. (2009). A compact water based dielectric resonator antenna. In IEEE Antennas and Propagation Society International Symposium, APSURSI’09, pp.1–4, 2009.Google Scholar
  7. 7.
    Hu, Z., Shen, Z., & Wu, W. (2014). Reconfigurable leaky-wave antenna based on periodic water grating. IEEE Antennas and Wireless Propagation Letters, 13, 134–137.CrossRefGoogle Scholar
  8. 8.
    Li, Y., & Luk, K. (2015). A water dense dielectric patch antenna. IEEE Access, 3, 274–280.CrossRefGoogle Scholar
  9. 9.
    Gaber, S., Zainud-Deen, S. H., & Malhat, H. A. (2014). Analysis and design of reflectarrays/transmitarrays antennas. Riga: Lap Lambert Academic Publishing.Google Scholar
  10. 10.
    Malhat, H. A., Zainud-Deen, S. H., Badawy, M. M., & Awadalla, K. H. (2015). Dual-mode plasma reflectarray/transmitarray antennas. IEEE Transactions on Plasma Science, 43(9), 3582–3589.CrossRefGoogle Scholar
  11. 11.
    Clemens, M., & Weiland, T. (2001). Discrete electromagnetism with the finite integration technique. Progress In Electromagnetics Research, PIER, 32, 65–87.CrossRefGoogle Scholar
  12. 12.
    Zhou, X., & Pan, G. W. (2006). Application of physical spline finite element method (PSFEM) to full wave analysis of waveguide. Progress In Electromagnetics Research (PIER), 60, 19–41.CrossRefGoogle Scholar
  13. 13.
    Ellison, W., Balana, A., Delbos, G., Lamkaouchi, K., Eymard, L., Guillou, C., et al. (1998). New permittivity measurements of seawater. Radio Science, 33(3), 639–648.CrossRefGoogle Scholar
  14. 14.
    Kumar, A. (1979). Complex permittivity and microwave heating of pure water, tap water and salt solution. International Journal of Electronics, 47(6), 531–536.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical Communication Engineering, Faculty of Engineering and TechnologyBadr University in CairoCairoEgypt
  2. 2.Department of Electrical Communication Engineering, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations