Advertisement

Convex Combination of SISO Equalization and Blind Source Separation for MIMO Blind Equalization

  • Yongjun SunEmail author
  • Liangting Zhu
  • Dongmin Li
  • Zujun Liu
Article
  • 8 Downloads

Abstract

For Multiple-Input Multiple-Output (MIMO) system the received signal will suffer not only inter-symbol interference but also inter-antenna interference under frequency selective fading channel. This paper proposes a MIMO blind equalization algorithm consisting of the convex combination of Single-Input Single-Output (SISO) blind equalization algorithm and blind source separation (BSS). The main purpose of the SISO equalization algorithm is to convert the convolution channel into multiplicative channel, and the BSS algorithm is mainly used to separate the different sources. The SISO equalization algorithm used in the paper is the modified constant modulus algorithm (MCMA) because of its simplicity and effectiveness. The BSS algorithm is the constraint fitting probability density function algorithm (CFPA). The MIMO blind equalization algorithm is named as MCMA–CFPA. Moreover, a low complexity MCMA–CFPA and a dual mode algorithm based on soft switching are presented. Simulation results show that the proposed algorithms can simultaneously equalize and separate all transmission signals.

Keywords

MIMO Blind source separation Low complexity Dual-mode 

Notes

References

  1. 1.
    Li, Y., & Ray, K. J. (1998). Adaptive blind source separation and equalization for multiple input/multiple output systems. IEEE Transactions on Information Theory, 44(7), 2864–2876.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fki, S., et al. (2014). Blind equalization based on pdf fitting and convergence analysis. Signal Processing, 101, 266–277.CrossRefGoogle Scholar
  3. 3.
    Yuan, J.-T., & Tsai, K.-D. (2005). Analysis of the multimodulus blind equalization algorithm in QAM communication systems. IEEE Transactions on Communications, 53(9), 1427–1431.CrossRefGoogle Scholar
  4. 4.
    Oh, K. N., & Chin, Y. O. (1995). Modified constant modulus algorithm: blind equalization and carrier phase recovery algorithm. In Proc. 1995 IEEE int. conf. comm., Seattle, WA (Vol. 1, pp. 498–502).Google Scholar
  5. 5.
    Abrar, S., & Nandi, A. K. (2010). Blind equalization of square-QAM signals: A multimodulus approach. IEEE Transactions on Communications, 58(6), 1674–1685.CrossRefGoogle Scholar
  6. 6.
    Papadias, C. B. (2004). Globally convergence blind source separation based on a multiuser kurtosis maximization criterion. IEEE Transactions on Signal Processing, 48(12), 3508–3519.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Papadias, C. B., & Paulraj, A. (1997). A constant modulus algorithm for multiuser signal separation in presence of delay spread using antenna arrays. IEEE Signal Processing Letters, 4(6), 178–181.CrossRefGoogle Scholar
  8. 8.
    Lee, Z. H., & Lim, W. G. (2010) Hybrid methods in MIMO blind equalization and source separation. In IEEE symposium on industrial electronics and application (pp. 5–9).Google Scholar
  9. 9.
    Abrudan, T. E., & Koivunen, V. (2007). Blind equalization in spatial multiplexing MIMO-OFDM systems based on vector CMA and decorrelation criteria. Wireless Personal Communication, 43, 1151–1172.CrossRefGoogle Scholar
  10. 10.
    Nong, G., et al. (2006). A new blind signal separation algorithm for instantaneous MIMO system. In IEEE GLOBECOM 2006 proceedings (pp. 1–5).Google Scholar
  11. 11.
    Shi, K., & Zhang, X. (2006). Blind equalization of MIMO systems based on orthogonal constant modulus algorithm. Journal of Electronics, 23(2), 181–183.Google Scholar
  12. 12.
    Papadias, C. B. (2004). Unsupervised receiver processing techniques for linear space-time equalization of wideband multiple input/multiple output channels. IEEE Transactions on Signal Processing, 52(2), 472–482.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Arenas-García, J., Figueiras-Vidal, A. R., & Sayed, A. H. (2006). Mean-square performance of a convex combination of two adaptive filters. IEEE Transactions on Signal Processing, 54(3), 1078–1090.CrossRefzbMATHGoogle Scholar
  14. 14.
    Das, B. K., & Chakraborty, M. (2014). Sparse adaptive filtering by an adaptive convex combination of the LMS and the ZA-LMS algorithms. IEEE Transactions on Circuits and Systems—I: Regular Papers, 61(5), 1499–1507.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Silva, M. T. M., & Arenas-García, J. (2013). A soft-switching blind equalization scheme via convex combination of adaptive filters. IEEE Transactions on Signal Processing, 61(5), 1171–1182.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cavalcante, C. C., et al. (2003). A Constrained version of fitting pdf algorithm for blind source separation. In Proceeding of IEEE signal processing advances for wireless communications, Rome (pp. 15–18).Google Scholar
  17. 17.
    Cavalcante, C. C., Cavalcanti, F. R. P., & Mota, J. C. M. (2002). Adaptive blind multiuser separation criterion based on log-likelihood maximization. IEEE Electronics Letters, 38(20), 1231–1233.CrossRefGoogle Scholar
  18. 18.
    Cavalcante, C. C., & Romano, J. M. T. (2005). Multi-user pdf estimation based criteria for adaptive blind separation of discrete sources. Signal Processing, 85, 1059–1072. (Special issue on information theoretic signal processing).CrossRefzbMATHGoogle Scholar
  19. 19.
    Haykin, S. (2000). Unsupervised adaptive filtering, source separation (Vol. I). New York: Wiley.Google Scholar
  20. 20.
    Lim, W. G., et al. (2004). Reliability based soft transition technique for dual-mode blind equalizers. In 2004 IEEE international conference on communications (pp. 2631–2635).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yongjun Sun
    • 1
    Email author
  • Liangting Zhu
    • 1
  • Dongmin Li
    • 2
  • Zujun Liu
    • 1
  1. 1.Xidian University, State Key Laboratory of Integrated Services NetworksShannxiChina
  2. 2.Qindao Topscomm Communication Co. LtdQingdaoChina

Personalised recommendations