Advertisement

An Efficient Genetic Based Broadcast Stateless Group Key Management Scheme with Dynamic Rekeying in Mobile Ad-Hoc Networks

  • V. S. JananiEmail author
  • M. S. K. Manikandan
Article
  • 10 Downloads

Abstract

This paper addresses the issue in managing a group key among dynamic group of nodes in Mobile Ad hoc Networks (MANETs), where the participants frequently miss the group key update, commonly known as rekeying. In this paper, we propose a broadcast stateless and distributed Group Key Management framework: Genetic based Group Key Agreement scheme, for supporting dynamic rekeying mechanism in MANET. The rekeying scheme operates with hash functions and Lagrange interpolation polynomial implementation over finite area for group key establishment. Moreover, to provide a strong security mechanism, a revocation system is presented to gather accurate rate of node misbehaviours. The simulation results show that the proposed group key management scheme achieved higher performance and security compared with other existing key management schemes. Moreover, the scheme detects both selfish and malicious attacks fairly at lower overhead.

Keywords

Group key management Genetic Stateless rekeying MANET Security Group key 

Notes

References

  1. 1.
    Boyd, C. (1997). On key agreement and conference key agreement. In Proceedings of second Australasian conference information security and privacy (ACISP’97), LNCS (Vol. 1270, pp. 294–302).Google Scholar
  2. 2.
    Kim, Y., Perrig, A., & Tsudik, G. (2004). Group key agreement efficient in communication. IEEE Transactions on Computers, 53(7), 905–921.CrossRefGoogle Scholar
  3. 3.
    Lee, P. P. C., Lui, J. C. S., & Yau, D. K. Y. (2006). Distributed collaborative key agreement and authentication protocols for dynamic peer groups. IEEE/ACM Transactions on Networking, 14(2), 263–276.CrossRefGoogle Scholar
  4. 4.
    Jarecki, S., Kim, J., & Tsudik, G. (2011). Flexible robust group key agreement. IEEE Transactions on Parallel and Distributed Systems, 22(5), 879–886.CrossRefGoogle Scholar
  5. 5.
    Harn, L., Hsu, C.-F., & Li, B. (2016). Centralized group key establishment protocol without a mutually trusted third party. Mobile Networks and Applications-Springer, 23(5), 1132–1140.CrossRefGoogle Scholar
  6. 6.
    Engel, C. R., Kandlur, D., Pendrakis, D., & Saha, D. (1999). Key management for secure internet multicast using Boolean function minimization techniques. In IEEE INFOCOM’99 (Vol. 2, pp. 689–698).Google Scholar
  7. 7.
    Moyer, M. J., Rao, J. R., & Rohatgi, P. (1999). A survey of security issues in multicast communications. IEEE Network Magazine, 13(6), 12–23.CrossRefGoogle Scholar
  8. 8.
    Wong, C. K., Gouda, M. G., & Lam, S. S. (2000). Secure group communications using key graphs. IEEE/ACM Transactions on Networking, 8(1), 16–30.CrossRefGoogle Scholar
  9. 9.
    Zhu, S., Setia, S., Xu, S., & Jajodia, S. (2006). GKMPAN: An efficient group rekeying scheme for secure multicast in ad-hoc networks. Journal of Computer Security, 14, 301–325.CrossRefGoogle Scholar
  10. 10.
    Firdous, K., Sajid, H., Jong, H. P., & Ashraf, M. (2007). Secure group communication with self-healing and rekeying in wireless sensor networks. MSN 2007: Mobile Ad-Hoc and Sensor Networks, 2007, 737–748.Google Scholar
  11. 11.
    Park, Y., Je, D., Park, M., & Seo, S. (2014). Efficient rekeying framework for secure multicast with diverse-subscription period mobile users. IEEE Transactions on Mobile Computing, 13(4), 783–796.CrossRefGoogle Scholar
  12. 12.
    Jing, L., Liu, M., Wang, C., & Yao, S. (2017). Group rekeying in the exclusive subset-cover framework. Theoretical Computer Science, 678, 63–77.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chen, Y.-R., & Tzeng, W.-G. (2017). Group key management with efficient rekey mechanism: A semi-stateful approach for out-of-synchronized members. Computer Communications, 98(15), 31–42.CrossRefGoogle Scholar
  14. 14.
    Wallner, D. M., Harder, E. J., & Agee R. C. (1998). Key management for multicast: issues and architectures. In Internet draft, Internet Engineering Task Force.Google Scholar
  15. 15.
    Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., & Pinkas, B. (1999). Multicast security: a taxonomy and some efficient constructions. In Proceedings IEEE INFOCOM (pp. 708–716).Google Scholar
  16. 16.
    Wong, C. K., Gouda, M., & Lam, S. S. (2000). Secure group communications using key graphs. IEEE/ACM Transactions on Networking, 8(1), 16–30.CrossRefGoogle Scholar
  17. 17.
    Perrig, A., Song, D., & Tygar, D. (2001). ELK, a new protocol for efficient large-group key distribution. In Proceedings IEEE symposium on security and privacy (pp. 247–262).Google Scholar
  18. 18.
    Sherman, A. T., & McGrew, D. A. (2003). Key establishment in large dynamic groups using one-way function trees. IEEE Transactions on. Software Engineering, 29(5), 444–458.CrossRefGoogle Scholar
  19. 19.
    Pour, A. N., Kumekawa, K., Kato, T., & Itoh, S. (2007). A hierarchical group key management scheme for secure multicast increasing efficiency of key distribution in leave operation. Computer Networks, 51(17), 4727–4743.CrossRefzbMATHGoogle Scholar
  20. 20.
    Lin, J.-C., Huang, K.-H., Lai, F., & Lee, H.-C. (2009). Secure and efficient group key management with shared key derivation. Computer Standards & Interfaces, 31(1), 192–208.CrossRefGoogle Scholar
  21. 21.
    Je, D., Lee, J., Park, Y., & Seo, S. (2010). Computation-and-storage-efficient key tree management protocol for secure multicast communications. Computer Communications, 33(2), 136–148.CrossRefGoogle Scholar
  22. 22.
    Fiat, A., & Naor, M. (1993). Broadcast encryption. In Proceedings of CRYPTO (pp. 480–491).Google Scholar
  23. 23.
    Staddon, J., Miner, S. K., Franklin, M. K., Balfanz, D., Malkin, M., & Dean, D. (2002). Self-healing key distribution with revocation. In Proceedings of the IEEE symposium on security and privacy (S&P) (pp. 241–257).Google Scholar
  24. 24.
    Nabeel, M., Shang, N., & Bertino, E. (2013). Privacy preserving policy-based content sharing in public clouds. IEEE Transactions on Knowledge and Data Engineering, 25(11), 2602–2614.CrossRefGoogle Scholar
  25. 25.
    Tang, S., Xu, L., Liu, N., Huang, X., Ding, J., & Yang, Z. (2014). Provably secure group key management approach based upon hyper-sphere. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3253–3263.CrossRefGoogle Scholar
  26. 26.
    Kim, J., Susilo, W., Au, M. H., & Seberry, J. (2015). Adaptively secure identity-based broadcast encryption with a constant-sized ciphertext. IEEE Transactions on Information Forensics and Security Information, 10(3), 679–693.CrossRefGoogle Scholar
  27. 27.
    Liu, D., Ning, P., & Sun, K. (2003). Efficient self-healing group key distribution with revocation capability. In Proceedings of the ACM conference on computer and communications security (CCS) (pp. 231–240).Google Scholar
  28. 28.
    Du, X., Wang, Y., Ge, J., & Wang, Y. (2005). An ID-based broadcast encryption scheme for key distribution. IEEE Transactions on Broadcasting, 51(2), 264–266.CrossRefGoogle Scholar
  29. 29.
    Gu, J., & Xue, Z. (2010). An efficient self-healing key distribution with resistance to the collusion attack for wireless sensor networks. In Proceedings of the IEEE international conference on communications (ICC) (pp. 1–5).Google Scholar
  30. 30.
    Nabeel, M., & Bertino, E. (2014). Attribute based group key management. Transactions on Data Privacy, 7(3), 309–336.MathSciNetGoogle Scholar
  31. 31.
    Yanji, P., Kim, J., Tariq, U., & Hong, M. (2013). Polynomial-based key management for secure intra-group and inter-group communication. Computers & Mathematics with Applications, 65(9), 1300–1309.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Chen, Y.-R., & Tzeng, W.-G. (2012). Efficient and provably-secure group key management scheme using key derivation. In Proceedings of the IEEE conference on trust, security and privacy in computing and communications trustcom (pp. 295–302).Google Scholar
  33. 33.
    Bacchus, A., Lin, X., Sun, Y., & Chen, M. (2016). Towards collusion-attack-resilient group key management using one-way function tree. Computer Networks, 104(20), 16–26.Google Scholar
  34. 34.
    Park, Y., Je, D., Park, M., & Seo, S. (2014). Efficient rekeying framework for secure multicast with diverse-subscription-period mobile users. IEEE Transactions on Mobile Computing, 13(4), 783–796.CrossRefGoogle Scholar
  35. 35.
    Daghighi, B., Kiah, M. L. M., Shamshirband, S., Iqbal, S., & Asghari, P. (2015). Key management paradigm for mobile secure group communications: Issues, solutions, and challenges. Computer Communications, 72, 1–16.CrossRefGoogle Scholar
  36. 36.
    Mapoka, T. T., Shepherd, S. J., & Abd-Alhameed, R. A. (2015). A new multiple service key management scheme for secure wireless mobile multicast. IEEE Transactions on Mobile Computing, 14(8), 1545–1559.CrossRefGoogle Scholar
  37. 37.
    Je, D.-H., Seo, S., Park, Y., & Lee, J. (2010). Computation-and-storage efficient key tree management protocol for secure multicast communications. Elsevier, Computer Communications, 33(2), 136–148.CrossRefGoogle Scholar
  38. 38.
    Li, L.-C., & Liu, R.-S. (2010). Securing cluster-based ad hoc networks with distributed authorities. IEEE Transactions on Wireless Communications, 9(10), 3072–3081.CrossRefGoogle Scholar
  39. 39.
    Lin, C.-H., Lin, H.-H., & Chang, J.-C. (2006). Multiparty key agreement for secure teleconferencing. In IEEE international conference on systems, man and cybernetics (pp. 3702–3707).Google Scholar
  40. 40.
    Chen, Y.-R., & Tzeng, W.-G. (2017). Group key management with efficient rekey mechanism: A semi-stateful approach for out-of-synchronized members. Computer Communications, 98, 31–42.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ECEThiagarajar College of EngineeringMaduraiIndia

Personalised recommendations