Advertisement

Q-FRPML: QoS-Centric Fault-Resilient Routing Protocol for Mobile-WSN Based Low Power Lossy Networks

  • D. R. Ganesh
  • Kiran Kumari Patil
  • L. Suresh
Article
  • 25 Downloads

Abstract

Considering the significance of mobile-Wireless Sensor Networks (WSNs) under Low Power Lossy Network (LLN) Conditions, in this paper a highly robust and QoS-Centric Fault-Resilient Routing Protocol for Mobile-WSN in LLN (Q-FRPML) has been proposed. Unlike classical routing approaches such as Routing Protocol for 6LowPAN based LLNs (RPL), our proposed Q-FRPML protocol contributes multiple novelties including received signal strength indicator (RSSI) based mobile node positioning for fault-resilient communication, proactive node management, RSSI and ETX objective functions based best parent node selection, link layer adaptive fault-resilient alternate path formation for QoS centric communication over mobile-WSNs. Q-FRPML protocol is implemented in parallel to the link layer of the classical RPL IEEE 802.15.4 protocol stack that once detecting any link-outage executes best parent node selection and alternate path formation to assure reliable data delivery. In this process, Q-FRPML avoids continuous network discovery that significantly reduces signaling overheads and energy consumption. Contiki-Cooja based simulation results have revealed that the proposed Q-FRPML protocol outperforms state-of-art native RPL or S-RPL protocol in terms of higher packet delivery ratio, lower packet loss ratio and end-to-end delay under varying network or load conditions. Though, Q-FRPML protocol has been applied in parallel to the native RPL, it preserves backward compatibility and hence can be applied in real-time mobile-WSN based QoS centric communication purposes.

Keywords

Fault-resilient communication Wireless sensor networks Mobile-RPL Low power lossy network RPL under mobility 

Notes

References

  1. 1.
    Ehsan, S., & Hamdaoui, B. (2012). A survey on energy-efficient routing techniques with QoS assurances for wireless multimedia sensor networks. In Communications surveys & tutorials, Second Quarter, vol. 14, no. 2 (pp. 265–278). IEEE.Google Scholar
  2. 2.
    Spachos, P., Toumpakaris, D., & Hatzinakos, D. (2015). QoS and energy-aware dynamic routing in wireless multimedia sensor networks. In IEEE international conference on communications (ICC) (pp. 6935–6940).Google Scholar
  3. 3.
    Sen, J., & Ukil, A. (2009). An adaptable and QoS-aware routing protocol for wireless sensor networks. In 1st international conference on wireless communication, vehicular technology, information theory and aerospace & electronic systems technology (pp. 767–771).Google Scholar
  4. 4.
    Khanke, K., & Sarde, M. (2015). An energy efficient and QoS aware routing protocol for wireless sensor network. International Journal of Advanced Research in Computer and Communication Engineering, 4(7), 355–358.Google Scholar
  5. 5.
    Lombardo, L., Corbellini, S., Parvis, M., Elsayed, A., Angelini, E., & Grassini, S. (2018). Wireless sensor network for distributed environmental monitoring. IEEE Transactions on Instrumentation and Measurement, 67(5), 1214–1222.CrossRefGoogle Scholar
  6. 6.
    Ullo, S. et al. (2018). Application of wireless sensor networks to environmental monitoring for sustainable mobility. In 2018 IEEE International conference on environmental engineering (EE), Milan, Italy (pp. 1–7).Google Scholar
  7. 7.
    Fallah, Y. P., Nasiopoulos, P., & Alnuweiri, H. (2008). Efficient transmission of H.264 video over multirate IEEE 802.11e WLANs. EURASIP Journa of Wireless Communications and Networking, 2008, 14.Google Scholar
  8. 8.
    Trapasiya, S. D., & Soni, H. B. (2017). Energy efficient policy selection in wireless sensor network using cross layer approach. In IET wireless sensor systems, vol. 7, no. 6 (pp. 191–197).Google Scholar
  9. 9.
    He, W., Qiao, P. L., Zhou, Z. J., Hu, G. Y., Feng, Z. C., & Wei, H. (2018). A new belief-rule-based method for fault diagnosis of wireless sensor network. IEEE Access, 6, 9404–9419.CrossRefGoogle Scholar
  10. 10.
    Zhou, J., Zhang, Z., Tang, S., Huang, X., Mo, Y., & Du, D. Z. (2017). Fault-Tolerant virtual backbone in heterogeneous wireless sensor network. IEEE/ACM Transactions on Networking, 25(6), 3487–3499.CrossRefGoogle Scholar
  11. 11.
    Hu, S., & Li, G. (2018). Fault-tolerant clustering topology evolution mechanism of wireless sensor networks. IEEE Access, 6, 28085–28096.CrossRefGoogle Scholar
  12. 12.
    Kaur, T., & Kumar, D. (2018). Particle swarm optimization-based unequal and fault tolerant clustering protocol for wireless sensor networks. IEEE Sensors Journal, 18(11), 4614–4622.CrossRefGoogle Scholar
  13. 13.
    Cichoń, J., Gębala, M., & Zawada, M. (2017). Fault tolerant protocol for data collecting in wireless sensor networks. In 2017 IEEE symposium on computers and communications (ISCC), Heraklion (pp. 483–486).Google Scholar
  14. 14.
    Ma, G., Yang, Y., Qiu, X., Gao, Z., & Li, H. (2017). Fault-tolerant topology control for heterogeneous wireless sensor networks using multi-routing tree. In 2017 IFIP/IEEE symposium on integrated network and service management (IM), Lisbon (pp. 620–623).Google Scholar
  15. 15.
    Kaiwartya, O., et al. (2018). Virtualization in wireless sensor networks: Fault tolerant embedding for internet of things. IEEE Internet of Things Journal, 5(2), 571–580.CrossRefGoogle Scholar
  16. 16.
    Khoufi, I., Minet, P., & Laouiti, A. (2016). Fault-tolerant and constrained relay node placement in wireless sensor networks. In 2016 IEEE 13th international conference on mobile ad hoc and sensor systems (MASS), Brasilia (pp. 127–135).Google Scholar
  17. 17.
    Ghabri, A., Horchani, L., & Bellalouna, M. (2016). New fault tolerant strategy of wireless sensor network. In 2016 IEEE/ACIS 15th international conference on computer and information science (ICIS), Okayama (pp. 1–6).Google Scholar
  18. 18.
    Peng, H., et al. (2015). Energy-efficient and fault-tolerant evolution models for large-scale wireless sensor networks: A complex networks-based approach. In 2015 IEEE global communications conference (GLOBECOM), San Diego, CA (pp. 1–6).Google Scholar
  19. 19.
    Nitesh, K., Azharuddin, M., & Jana, P. K. (2015). Energy efficient fault-tolerant clustering algorithm for wireless sensor networks. 2015 International conference on green computing and internet of things (ICGCIoT), Noida (pp. 234–239).Google Scholar
  20. 20.
    Liu, X., Zhou, H., Xiong, S., Hou, K. M., Vaulx, C. D., & Shi, H. (2015). Development of a resource-efficient and fault-tolerant wireless sensor network system. In 2015 2nd International symposium on dependable computing and internet of things, Wuhan (pp. 122–127).Google Scholar
  21. 21.
    Samanta, M., & Banerjee, I. (2014). Optimal load distribution of cluster head in fault-tolerant wireless sensor network. In 2014 IEEE students’ conference on electrical, electronics and computer science (SCEECS), Bhopal (pp. 1–7).Google Scholar
  22. 22.
    Mugelan, R. K., Alsath, M. G. N., & Yokesh, V. (2011). Fault tolerant wireless sensor network for remote data acquisition. In 2011 International conference on electronics, communication and computing technologies, Pauls Nagar (pp. 69–72).Google Scholar
  23. 23.
    Liu, C. T., Huo, H., Fang, T., & Li, D. R. (2009). Fault tolerant interval fusion for moving vehicle classification in wireless sensor networks. In IET international communication conference on wireless mobile and computing (CCWMC 2009), Shanghai, China (pp. 669–672).Google Scholar
  24. 24.
    Bertier, M., Kermarrec, A. M., & Tan, G. (2010). Message-efficient byzantine fault-tolerant broadcast in a multi-hop wireless sensor network. In 2010 IEEE 30th international conference on distributed computing systems, Genoa, Italy (pp. 408–417).Google Scholar
  25. 25.
    Vasseur, J. P. (2011). Terminology in low power and lossy networks, draftietf-roll-terminology. https://tools.ietf.org/search/draft-ietf-roll-terminology-06. Accessed 3 Nov 2017.
  26. 26.
    Winter, T., Thubert, P., Brandt, A., Clausen, T., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., & Vasseur, J. (2012). RPL: IPv6 routing protocol for low power and lossy networks. https://tools.ietf.org/html/rfc6550. Accessed 3 Nov 2017.
  27. 27.
    Lee, K. C., Sudhaakar, R., Ning, J., Dai, L., Addepalli, S., Vasseur, J. P., & Gerla, M. (2012). A comprehensive evaluation of RPL under mobility. Hindawi Publishing Corporation International Journal of Vehicular Technology, 2012.Google Scholar
  28. 28.
    Vasseur, J., & Dunkels, A. (2010). Interconnecting smart objects with IP: The next internet (1st ed.). Burlington: Morgan Kaufmann.Google Scholar
  29. 29.
    Ouadjaout, A., Challal, Y., Lasla, N., & Bagaa, M. (2008). SEIF: Secure and efficient intrusion-fault tolerant routing protocol for wireless sensor networks. In 2008 Third international conference on availability, reliability and security, Barcelona (pp. 503–508).Google Scholar
  30. 30.
    Nabizadeh, H., & Abbaspour, M. (2011). IFRP: An intrusion/fault tolerant routing protocol for increasing resiliency and reliability in wireless sensor networks. In 2011 International conference on selected topics in mobile and wireless networking (iCOST), Shanghai (pp. 24–29).Google Scholar
  31. 31.
    Bellalouna, M., & Ghabri, A. (2013). A priori methods for fault tolerance in wireless sensor networks. In 2013 World congress on computer and information technology (WCCIT), Sousse (pp. 1–6).Google Scholar
  32. 32.
    Lin, H. Y. (2009). Hypercube routing protocol with secure data transmission mechanisms in sensor networks using elliptic curve Diffie–Hellman key agreements. In 2009 International conference on new trends in information and service science, Beijing (pp. 1303–1308).Google Scholar
  33. 33.
    Chuah, M., & Metgzer, R. (2008). Secure data retrieval system (SEDAR) for DTNs. In MILCOM 2008 - 2008 IEEE military communications conference, San Diego, CA (pp. 1–7).Google Scholar
  34. 34.
    Chandra, M. L. R., & Reddy, P. C. S. (2016). Fault tolerance QoS routing protocol for MANETs. In 2016 IEEE 6th international conference on advanced computing (IACC), Bhimavaram (pp. 623–628).Google Scholar
  35. 35.
    Kang, J., Sucec, J., Kaul, V., Samtani, S., & Fecko, M. A. (2009). Robust PIM-SM multicasting using anycast RP in wireless ad hoc networks. In 2009 IEEE international conference on communications, Dresden (pp. 1–6).Google Scholar
  36. 36.
    Dhote, K., & Asutkar, G. M. (2017). Optimization of routing techniques in wireless sensor network using queue management. In 2017 IEEE devices for integrated circuit (DevIC), Kalyani (pp. 500–504).Google Scholar
  37. 37.
    Subhashree, V. K., Tharini, C., & Swarna Lakshmi, M. (2014). Modified LEACH: A QoS-aware clustering algorithm for wireless sensor networks. In 2014 International conference on communication and network technologies, Sivakasi (pp. 119–123).Google Scholar
  38. 38.
    Chand, M. S., & Kumar, B. (2016). A novel QoS—Aware improved-clustering-heuristic for wireless sensor networks. In 2016 3rd international conference on computing for sustainable global development (INDIACom), New Delhi (pp. 513–518).Google Scholar
  39. 39.
    Deepa, C., & Latha, B. (2014). HHCS: Hybrid hierarchical cluster based secure routing protocol for wireless sensor networks. In International conference on information communication and embedded systems (ICICES2014), Chennai (pp. 1–6).Google Scholar
  40. 40.
    Robinson, W. H., & Lauf, A. P. (2013). Resilient and efficient MANET aerial communications for search and rescue applications. In 2013 International conference on computing, networking and communications (ICNC), San Diego, CA (pp. 845–849).Google Scholar
  41. 41.
    Oldewurtel, F., Ansari, J., & Mahonen, P. (2008). Cross-layer design for distributed source coding in wireless sensor networks. In Proceedings of SENSORCOM’ 08 (pp. 435–443).Google Scholar
  42. 42.
    James, P. F., How, C., Bull, D., & Nix, A. (2008). Distortion-based link adaptation for wireless video transmission. EURASIP Journal of Advance Signal Processing, 2008, 17.zbMATHGoogle Scholar
  43. 43.
    Amala Shiny, V. A., & Nagarajan, V. (2012). Energy efficient routing protocol for mobile wireless sensor network. International Journal of Computer Applications, 43(21), 1–5.Google Scholar
  44. 44.
    Shiang, H. P., & Var der Schaar, M. (2009). Distributed resource management in multi-hop cognitive radio networks for delay sensitive transmission. IEEE Transactions on Vehicular Technology, 58(2), 941–953.CrossRefGoogle Scholar
  45. 45.
    Jaradat, T., Benhaddou, D., Balakrishnan, M., & Al-Fuqaha, A. (2013). Energy efficient cross-layer routing protocol in wireless sensor networks based on fuzzy logic. In: 2013 9th International wireless communications and mobile computing conference (IWCMC), Sardinia (pp. 177–182).Google Scholar
  46. 46.
    Brar, G. S., Rani, S., Chopra, V., Malhotra, R., Song, H., & Ahmed, S. H. (2016). Energy efficient direction-based PDORP routing protocol for WMSN. IEEE Access, 4, 3182–3194.CrossRefGoogle Scholar
  47. 47.
    Yahya, B., & Ben-Othman, J. (2009). An energy efficient and QoS aware multipath2routing protocol for wireless sensor networks. In IEEE 34th conference local computer networks (pp. 93–100).Google Scholar
  48. 48.
    Hong, K. S., & Choi, L. (2011). DAG-based multipath routing for mobile sensor networks. In 2011 International Conference on ICT Convergence (ICTC) (pp. 261–266).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.REVA UniversityBangaloreIndia
  2. 2.School of Computing and ITREVA UniversityBangaloreIndia
  3. 3.Cambridge Institute of TechnologyBangaloreIndia

Personalised recommendations