Advertisement

On the Intercept Probability of DF Relaying Wireless Communication

  • Nenad D. Milošević
  • Jelena A. Anastasov
  • Aleksandra M. Cvetković
  • Daniela M. Milović
  • Dejan N. Milić
Article
  • 5 Downloads

Abstract

In this work, we determine the probability of intercept for relaying wireless communication over Nakagami-m faded environment. An eavesdropper attempts to intercept the transmitted signal on link between a source and relay as well as between relay and destination. We used the decode-and forward relay to enhance the physical layer security of the system. The relay placement is analysed in order to increase the secrecy of the proposed four-node system transmission. Impacts of the path loss phenomena, fading depth, nonidentically distributed channel conditions and various signal strength transmissions are also analysed in order to realize the secure connection between the source and destination node.

Keywords

Decode-and-forward relay Eavesdropper Nakagami-m fading Intercept probability 

Notes

Acknowledgements

This paper was supported in part by the Ministry of Science of Republic of Serbia under Grants III44006 and TR-32051.

References

  1. 1.
    Zhang, Y., Shen, Y., Wang, H., Yong, J., & Jiang, X. (2016). On secure wireless communications for IoT under eavesdropper collusion. IEEE Transactions on Automation Science and Engineering, 13(3), 1281–1293.CrossRefGoogle Scholar
  2. 2.
    Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54(8), 1355–1387.  https://doi.org/10.1002/j.1538-7305.1975.tb02040.x.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Shor, P. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of IEEE FOCS (p. 124134).Google Scholar
  4. 4.
    Bloch, M., Barros, J., Rodrigues, M., & McLaughlin, S. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dong, L., Han, Z., Petropulu, A. P., & Poor, H. Vi. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lee, J.-H. (2015). Cooperative relaying protocol for improving physical layer security in wireless decode-and-forward relaying networks. Wireless Personal Communications, pp. 1–12.  https://doi.org/10.1007/s11277-015-2580-2.
  7. 7.
    Zheng, T.-X., Wang, H.-M., Liu, F., & Lee, M. H. (2015). Outage constrained secrecy throughput maximization for DF relay networks. IEEE Transaction on Communications, 63(5), 1741–1755.CrossRefGoogle Scholar
  8. 8.
    Nosrati, E., Wang, X., & Khabbazibasmenj, A. (2015). Secrecy capacity enhancement in two-hop DF relaying systems in the presence of eavesdropper. In Proceedings of the IEEE international conference on communications (ICC).  https://doi.org/10.1109/ICC.2015.7249503.
  9. 9.
    Kundu, C., Jindal, A., & Bose, R. (2017). Secrecy outage of dual-hop amplify-and-forward relay system with diversity combining at the eavesdropper. Wireless Personal Communications, 97(1), 539–563.  https://doi.org/10.1007/s11277-017-4518-3.CrossRefGoogle Scholar
  10. 10.
    Mo, J., Tao, M., & Liu, Y. (2012). Relay placement for physical layer security: A secure connection perspective. IEEE Communications Letters, 16(6), 878–881.CrossRefGoogle Scholar
  11. 11.
    Yang, M., Guo, D., Huang, Y., Duong, T. Q., & Zhang, B. (2016). Secure multiuser scheduling in downlink dual-hop regenerative relay networks over Nakagami-\(m\) fading channels. IEEE Transactions on Wireless Communications, 15(12), 8009–8024.CrossRefGoogle Scholar
  12. 12.
    Zou, Y., & Wang, G. (2016). Intercept behaviour analysis of industrial wireless sensor networks in the presence of eavesdropping attack. IEEE Transactions on Industrial Informatics, 12(2), 780–787.CrossRefGoogle Scholar
  13. 13.
    Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products (6th ed.). New York: Academic.zbMATHGoogle Scholar
  14. 14.
    Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1962). Integral and series, Part 3: More special functions. Moscow: Nauka Publisher. (in Russian).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Electronic EngineeringUniversity of NišNisSerbia

Personalised recommendations