Advertisement

An Energy-Efficient Dynamic Resource Management Approach Based on Clustering and Meta-Heuristic Algorithms in Cloud Computing IaaS Platforms

Energy Efficient Dynamic Cloud Resource Management
  • Maryam Askarizade Haghighi
  • Mehrdad MaeenEmail author
  • Majid Haghparast
Article
  • 37 Downloads

Abstract

Cloud computing as an emerging technology, has revolutionized the information technology industry by elastic on-demand provisioning and De-provisioning of computing resources. Due to the huge amount of electrical energy consumption by large-scale Datacenters, it is essential to investigate various approaches in order to decrease simultaneously energy and its impacts on global economic crisis and ecological concerns. This study through virtualization technique applied a hybrid technique for resource management. This technique used k-means clustering for mapping task and dynamic consolidation method, which improved by micro-genetic algorithm. Experimental evaluation performed on CloudSim 3.0.3 and the results were analyzed with Expert-Choice software tools. We found that the proposed KMGA technique could provide a good trade-off between effectively reduce energy consumption of Datacenters and sustained quality of service. In addition, it minimized the number of virtual machine migrations and make-span, in comparison with particle swarm optimization and genetic algorithms in similar hybrid techniques.

Keywords

Dynamic virtual machine consolidation Green cloud computing k-means clustering Micro-genetic algorithm Resource management 

Notes

References

  1. 1.
    Jackson, K. L., & Williams, R. (2011). The economic benefit of cloud computing. Forbes. Available at: http://www.forbes.com/sites/kevinjackson/2011/09/17/the-economic-benefit-of-cloud-computing.
  2. 2.
    Story, J. N. (2014). Cloud computing and the NSA: The carbon footprint of the secret servers. Pittsburgh Journal of Environmental and Public Health Law, 9(1), 33–65.  https://doi.org/10.5195/pjephl.2014.77.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lenk, A., Klems, M., Nimis, J., Tai, S., & Sandholm, T. (2009). What’s inside the Cloud? An architectural map of the Cloud landscape. In Proceedings of the 2009 ICSE workshop on software engineering challenges of cloud computing (pp. 23–31). IEEE Computer Society.Google Scholar
  4. 4.
    Bahrami, M., & Singhal, M. (2015). The role of cloud computing architecture in big data. In Information granularity, big data, and computational intelligence (pp. 275–295). Springer, Cham.  https://doi.org/10.1007/978-3-319-08254-7_13.
  5. 5.
    Buttazzo, G. C. (2002). Scalable applications for energy-aware processors. In International workshop on embedded software (pp. 153–165). Springer, Berlin.Google Scholar
  6. 6.
    Sekhar, J., Jeba, G., & Durga, S. (2012). A survey on energy efficient server consolidation through vm live migration. International Journal of Advances in Engineering & Technology, 5(1), 515–525.Google Scholar
  7. 7.
    Tianfield, H. (2013). A vision on VM consolidation for green cloud computing. Glasgow Caledonian University, United Kingdom.Google Scholar
  8. 8.
    Ameller, D., & Franch Gutiérrez, J. (2008). Service level agreement monitor (SALMon). In ICCBSS 2008 proceedings: Seventh international conference on composition-based software systems: 25–29 February 2008, Madrid, Spain (pp. 224–227). Institute of Electrical and Electronics Engineers (IEEE).Google Scholar
  9. 9.
    Ghani, I., Niknejad, N., & Jeong, S. R. (2015). Energy saving in green cloud computing datacenters: A review. Journal of Theoretical and Applied Information Technology, 74(1), 16–30.Google Scholar
  10. 10.
    Gandhi, A., Chen, Y., Gmach, D., Arlitt, M., & Marwah, M. (2012). Hybrid resource provisioning for minimizing data center SLA violations and power consumption. Sustainable Computing: Informatics and Systems, 2(2), 91–104.Google Scholar
  11. 11.
    Vasile, M. A., Pop, F., Tutueanu, R. I., & Cristea, V. (2013). HySARC 2: Hybrid scheduling algorithm based on resource clustering in cloud environments. In International conference on algorithms and architectures for parallel processing (pp. 416–425).Google Scholar
  12. 12.
    Leostream, Inc. (2002). Server consolidation technologies—a practical guide. Burlington MA01803, USA.Google Scholar
  13. 13.
    Li, G., Jiang, Y., Yang, W., Huang, C., & Tian, W. (2016). Self-adaptive consolidation of virtual machines for energy-efficiency in the cloud. arXiv preprint arXiv:1604.04482.
  14. 14.
    Ferreto, T. C., Netto, M. A., Calheiros, R. N., & De Rose, C. A. (2011). Server consolidation with migration control for virtualized data centers. Future Generation Computer Systems, 27(8), 1027–1034.CrossRefGoogle Scholar
  15. 15.
    Ferdaus, M. H., Murshed, M., Calheiros, R. N., & Buyya, R. (2014, August). Virtual machine consolidation in cloud data centers using ACO metaheuristic. In European conference on parallel processing (pp. 306–317).Google Scholar
  16. 16.
    Choudhary, V. K. (2016). Cloud computing and its applications: A review. International Journal of Emerging Trends & Technology in Computer, 5(4), 020–027.Google Scholar
  17. 17.
    Iqbal, W., Dailey, M. N., Carrera, D., & Janecek, P. (2011). Adaptive resource provisioning for read intensive multi-tier applications in the cloud. Future Generation Computer Systems, 27(6), 871–879.CrossRefGoogle Scholar
  18. 18.
    Ranjan, R., Zhao, L., Wu, X., Liu, A., Quiroz, A., & Parashar, M. (2010). Peer-to-peer cloud provisioning: Service discovery and load-balancing. In Cloud computing (pp. 195–217). Springer, London.Google Scholar
  19. 19.
    Durgadevi, P., & Srinivasan, S. (2015). Task scheduling using amalgamation of metaheuristics swarm optimization algorithm and cuckoo search in cloud computing environment. Journal for Research, 1(09), 10–17.Google Scholar
  20. 20.
    Patel, K. S., & Sarje, A. K. (2012). VM provisioning method to improve the profit and SLA violation of cloud service providers. In Cloud computing in emerging markets (CCEM), 2012 IEEE International conference on (pp. 1–5). IEEE. doi:  https://doi.org/10.1109/ccem.2012.6354623.
  21. 21.
    Beloglazov, A., & Buyya, R. (2010). Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers. In MGC@ Middleware (p. 4).Google Scholar
  22. 22.
    Gu, J., Hu, J., Zhao, T., & Sun, G. (2012). A new resource scheduling strategy based on genetic algorithm in cloud computing environment. Journal of Computers, 7(1), 42–52.CrossRefGoogle Scholar
  23. 23.
    Murtazaev, A., & Oh, S. (2011). Sercon: Server consolidation algorithm using live migration of virtual machines for green computing. IETE Technical Review, 28(3), 212–231.CrossRefGoogle Scholar
  24. 24.
    Mofolo, T., & Suchithra, R. (2013). Heuristic based resource allocation using virtual machine migration: a cloud computing perspective. International Refereed Journal of Engineering and Science, 2(5), 40–45.Google Scholar
  25. 25.
    Yakhchi, M., Ghafari, S. M., Yakhchi, S., Fazeli, M., & Patooghi, A. (2015). Proposing a load balancing method based on Cuckoo Optimization Algorithm for energy management in cloud computing infrastructures. In Modeling, simulation, and applied optimization (ICMSAO), 2015 6th international conference on (pp. 1–5). IEEE.Google Scholar
  26. 26.
    Akiyama, S., Hirofuchi, T., Takano, R., & Honiden, S. (2012). Miyakodori: A memory reusing mechanism for dynamic vm consolidation. In Cloud computing (CLOUD), 2012 IEEE 5th international conference on (pp. 606–613). IEEE.Google Scholar
  27. 27.
    Liu, J., Luo, X. G., Zhang, X. M., Zhang, F., & Li, B. N. (2013). Job scheduling model for cloud computing based on multi-objective genetic algorithm. International Journal of Computer Science Issues, 10(1), 134–139.Google Scholar
  28. 28.
    Hurwitz, J. S., Bloor, R., Kaufman, M., & Halper, F. (2010). Cloud computing for dummies. London: Wiley.Google Scholar
  29. 29.
    Beloglazov, A. (2013). Energy-efficient management of virtual machines in Datacenters for cloud computing, Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy, Department of Computing and Information Systems, The University of Melbourne.Google Scholar
  30. 30.
    Minas, L., & Ellison, B. (2009). Energy efficiency for information technology: How to reduce power consumption in servers and data centers. Intel Press.Google Scholar
  31. 31.
    Fan, X., Weber, W. D., & Barroso, L. A. (2007). Power provisioning for a warehouse-sized computer. ACM SIGARCH Computer Architecture News, ACM., 35(2), 13–23.CrossRefGoogle Scholar
  32. 32.
    Barroso, L. A., & Hölzle, U. (2007). The case for energy-proportional computing. Computer, 12, 33–37.CrossRefGoogle Scholar
  33. 33.
    Lefurgy, C., Wang, X., & Ware, M. (2007, June). Server-level power control. In Autonomic computing, 2007. ICAC’07. Fourth international conference on (pp. 4–4). IEEE.Google Scholar
  34. 34.
    Jin, Y., Wen, Y., & Chen, Q. (2012, March). Energy efficiency and server virtualization in data centers: An empirical investigation. In Computer communications workshops (INFOCOM WKSHPS), 2012 IEEE Conference on (pp. 133–138). IEEE.Google Scholar
  35. 35.
    Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129–137.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Beloglazov, A., & Buyya, R. (2012). Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency and Computation: Practice and Experience, 24(13), 1397–1420.CrossRefGoogle Scholar
  37. 37.
    Upton, G., & Cook, I. (1996). Understanding statistics. Oxford: Oxford University Press.zbMATHGoogle Scholar
  38. 38.
    Shaw, S. B., & Singh, A. K. (2015). Use of proactive and reactive hotspot detection technique to reduce the number of virtual machine migration and energy consumption in cloud data center. Computers & Electrical Engineering, 47, 241–254.CrossRefGoogle Scholar
  39. 39.
    Oliveira, C., Petrucci, V., & Loques, O. (2010). Impact of server dynamic allocation on the response time for energy-efficient virtualized web clusters. In XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos-12th Brazillian workshop on real-time and embedded systems (WTR).Google Scholar
  40. 40.
    Al-Ayyoub, M., Jararweh, Y., Daraghmeh, M., & Althebyan, Q. (2015). Multi-agent based dynamic resource provisioning and monitoring for cloud computing systems infrastructure. Cluster Computing, 18(2), 919–932.CrossRefGoogle Scholar
  41. 41.
    Kalra, M., & Singh, S. (2015). A review of metaheuristic scheduling techniques in cloud computing. Egyptian Informatics Journal, 16(3), 275–295.CrossRefGoogle Scholar
  42. 42.
    Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys (CSUR), 35(3), 268–308.CrossRefGoogle Scholar
  43. 43.
    Dréo, J., & Candan, C. (2011). Different classifications of metaheuristics. Available at: https://en.wikipedia.org/wiki/Metaheuristic#/media/File:Metaheuristics_classification.svg. Accessed 28 Aug 2011.
  44. 44.
    Wang, S., Liu, Z., Zheng, Z., Sun, Q., & Yang, F. (2013). Particle swarm optimization for energy-aware virtual machine placement optimization in virtualized data centers. In Parallel and distributed systems (ICPADS), 2013 international conference on (pp. 102–109). IEEE.Google Scholar
  45. 45.
    Goldberg, D. E. (1989). Sizing populations for serial and parallel genetic algorithms. In Proceedings of the 3rd international conference on genetic algorithms (pp. 70–79). Fairfax.Google Scholar
  46. 46.
    Mendoza, J. E., Lopez, M. E., Coello, C. C., & Lopez, E. A. (2009). Micro genetic multi-objective reconfiguration algorithm considering power losses and reliability indices for medium voltage distribution network. IET Generation, Transmission and Distribution, 3(9), 825–840.CrossRefGoogle Scholar
  47. 47.
    Chipperfield, A., Fleming, P., Pohlheim, H., & Fonseca, C. (1994). Genetic algorithm toolbox for use with MATLAB. Department of automatic control and systems engineering, University of Sheffield. Available at: http://www.pohlheim.com/Papers/tr_gatbx12/ChipperfieldFlemingPohlheimFonseca_tr_GATbx_v12.pdf.
  48. 48.
    Coello, C. A., & Pulido, G. T. (2001). Multiobjective optimization using a micro-genetic algorithm. In Proceedings of the genetic and evolutionary computation conference (gecco’2001) (pp. 274–282).Google Scholar
  49. 49.
    Tan, C. J., Lim, C. P., & Cheah, Y. N. (2013). A modified micro genetic algorithm for undertaking multi-objective optimization problems. Journal of Intelligent & Fuzzy Systems, 24(3), 483–495.MathSciNetGoogle Scholar
  50. 50.
    Moghaddam, F. F., Moghaddam, R. F., & Cheriet, M. (2015). Carbon-aware distributed cloud: multi-level grouping genetic algorithm. Cluster Computing, 18(1), 477–491.CrossRefGoogle Scholar
  51. 51.
    Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011). CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience, 41(1), 23–50.Google Scholar
  52. 52.
    Tan, P. N., Steinbach, M., Kumar, V. (2005). Chap 8: Cluster analysis: basic concepts and algorithms. In Introduction to data mining, (pp. 503–505).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer EngineeringYadegar -e- Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad UniversityTehranIran

Personalised recommendations