Advertisement

Wireless Personal Communications

, Volume 104, Issue 1, pp 441–458 | Cite as

Robust Energy-Efficient Downlink Resource Allocation in Heterogeneous Networks with Outage Probability Constraint

  • Yongjun Xu
  • Yuan HuEmail author
Article
  • 52 Downloads

Abstract

With the development of the fifth generation communication technology, improving energy efficiency (EE is defined as the ratio of the system throughput over the total power consumption) of wireless communication becomes a hot topic, which has attracted wide attention from industry and academia. Heterogeneous networks (HetNets) have been considered as a new promising technique for expanding network coverage and improving EE. Robust resource allocation is a huge challenge when uncertainty parameters are involved in this issue. The problem is more significant in HetNets since perfect channel state information is not available at femtocell base station’s transmitters. In this paper, we study the downlink resource allocation in HetNets under outage probability constraint, and formulate the EE maximization problem as a nonlinear fractional programming problem. In order to solve the fractional programming problem, firstly, we transform the original problem into an equivalent optimization problem in a parametric subtractive form. Then based on the exponential distribution model under Rayleigh fading environment, the probability constraint is transformed into a deterministic constraint. Finally, we propose a two-loop iteration algorithm to find the optimal solution by using Dinkelbachs method and Lagrangian dual decomposition method. Simulation results demonstrate the convergence and the effectiveness of the proposed algorithm.

Keywords

Heterogeneous networks Resource allocation Energy efficiency Fractional programming Probability constraint 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61601071,61801062,61571070); The Natural Science Foundation Project of Chongqing (cstc2016jcyjA2197); Supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN201800606); Key R&D Project of Industry and Common Technology Innovation of Chongqing (cstc2017zdcy-zdyfX0049).

References

  1. 1.
    Li, Y., Celebi, H., Daneshmand, M., Wang, C., & Zhao, W. (2013). Energy-efficient femtocell networks: Challenges and opportunities. IEEE Wireless Communications, 20(6), 99–105.CrossRefGoogle Scholar
  2. 2.
    Xu, Y., Hu, Y., Chen, Q., Song, T., & Lai, R. (2017). Robust resource allocation for multi-tier cognitive heterogeneous networks. In 2017 IEEE international conference on communications, 2017 (ICC 2017) (pp. 1–6).Google Scholar
  3. 3.
    Xu, Y., Hu, Y., Chen, Q., Chai, R.,&Li, G. (2017). Distributed resource allocation for cognitive hetnets with cross-tier interference constraint. In 2017 IEEE wireless communications and networking conference, 2017 (WCNC 2017) (pp. 1–6).Google Scholar
  4. 4.
    Chen, J. Q., Chu, J. H., & Feng, K. T. (2015). Energy-efficient spectrum selection and resource allocation in downlink cognitive femtocell networks. In 2015 IEEE 81st vehicular technology conference (VTC Spring 2015) (pp. 1–5).Google Scholar
  5. 5.
    Song, Q., Wang, X., Qiu, T., & Ning, Z. (2017). An interference coordination-based distributed resource allocation scheme in heterogeneous cellular networks. IEEE Access, 5, 2152–2162.CrossRefGoogle Scholar
  6. 6.
    Martin-Vega, F. J., Delgado-Luque, I. M., Gomez, G., Aguayo-Torres, M. C., & Entrambasaguas, J. T. (2016). Downlink power setting for energy efficient heterogeneous cellular networks. In 2016 8th International congress on ultra-modern telecommunications and control systems and workshops, 2016 (ICUMT 2016) (pp. 147–151).Google Scholar
  7. 7.
    Vien, Q. T., Tuan, A. L., Nguyen, H. X., & Karamanoglu, M. (2015). An energy-efficient resource allocation for optimal downlink coverage in heterogeneous wireless cellular networks. In 2015 International symposium on wireless communication systems, 2015 (ISWCS 2015) (pp. 156–160).Google Scholar
  8. 8.
    Hsu, C. C., & Chang, J. M. (2017). Spectrum-energy efficiency optimization for downlink LTE-A for heterogeneous networks. IEEE Transactions on Mobile Computing, 16(5), 1449–1461.CrossRefGoogle Scholar
  9. 9.
    Yang, K., Martin, S., Quadri, D., Wu, J., & Feng, G. (2017). Energy-efficient downlink resource allocation in heterogeneous OFDMA networks. IEEE Transactions on Vehicular Technology, 66(6), 5086–5098.CrossRefGoogle Scholar
  10. 10.
    Nguyen, T. M., Yadav, A., Ajib, W., & Assi, C. (2016). Resource allocation in two-tier wireless backhaul heterogeneous networks. IEEE Transactions on Wireless Communications, 15(10), 6690–6704.CrossRefGoogle Scholar
  11. 11.
    Bu, S., Yu, F. R., & Yanikomeroglu, H. (2015). Interference-aware energy-efficient resource allocation for OFDMA-based heterogeneous networks with incomplete channel state information. IEEE Transactions on Vehicular Technology, 64(3), 1036–1050.CrossRefGoogle Scholar
  12. 12.
    Wang, S., Shi, W., & Wang, C. (2015). Energy-efficient resource management in OFDM-based cognitive radio networks under channel uncertainty. IEEE Transactions on Communications, 63(9), 3092–3102.CrossRefGoogle Scholar
  13. 13.
    Chen, J., Zhou, Y., & Kuo, Y. (2016). Energy-efficiency resource allocation for cognitive heterogeneous networks with imperfect channel state information. The Institution of Engineering and Technology Communications, 10(11), 1312–1319.Google Scholar
  14. 14.
    Wang, X., Zhu, P., Zheng, F. C., Meng, C., & You, X. (2015). Energy-efficient resource allocation in multi-cell OFDMA systems with imperfect CSI. In 2015 IEEE 82nd vehicular technology conference, 2015 (VTC2015-Fall 2015) (pp. 1–5).Google Scholar
  15. 15.
    Abdelhady, A., Amin, O., & Alouini, M. (2017). Energy-efficient resource allocation for phantom cellular networks with imperfect CSI. IEEE Transactions on Wireless Communications, 16(6), 3799–3813.CrossRefGoogle Scholar
  16. 16.
    Arajo, D. C., Maksymyuk, T., de Almeida, A. L. F., Maciel, T., Mota, J. C. M., & Jo, M. (2016). Massive MIMO: Survey and future research topics. IET Communications, 10(15), 1938–1946.CrossRefGoogle Scholar
  17. 17.
    Wang, L., Wong, K. K., Elkashlan, M., Nallanathan, A., & Lambotharan, S. (2015). Secrecy and energy efficiency in massive MIMO aided heterogeneous C-RAN: A new look at interference. IEEE Journal of Selected Topics in Signal Processing, 10(8), 1375–1389.CrossRefGoogle Scholar
  18. 18.
    Xu, G., Liu, A., Jiang, W., Xiang, H., & Luo, W. (2015). Energy-efficient beamforming for two-tier massive MIMO downlink. China Communications, 12(10), 64–75.CrossRefGoogle Scholar
  19. 19.
    Eraslan, E., & Daneshrad, B. (2017). Low-complexity link adaptation for energy efficiency maximization in MIMO–OFDM systems. IEEE Transactions on Wireless Communications, 16(8), 5102–5114.CrossRefGoogle Scholar
  20. 20.
    Iliev, T. B., Mihaylov, G. Y., Ivanova, E. P., & Stoyanov, I. S. (2017). Power control schemes for device-to-device communications in 5G mobile network. In 2017 40th International convention on information and communication technology, electronics and microelectronics, 2017 (MIPRO 2017) (pp. 416–419).Google Scholar
  21. 21.
    Zhou, Z., Ota, K., Dong, M., & Xu, C. (2017). Energy-efficient matching for resource allocation in D2D enabled cellular networks. IEEE Transactions on Vehicular Technology, 66(6), 5256–5268.CrossRefGoogle Scholar
  22. 22.
    Yang, H. H., Lee, J., & Quek, T. Q. S. (2016). Heterogeneous cellular network with energy harvesting-based D2D communication. IEEE Transactions on Wireless Communications, 15(2), 1406–1419.CrossRefGoogle Scholar
  23. 23.
    Lee, K., & Hong, J. P. (2017). Power control for energy efficient D2D communication in heterogeneous networks with eavesdropper. IEEE Communications Letters, 21(11), 2536–2539.CrossRefGoogle Scholar
  24. 24.
    He, A., Wang, L., Chen, Y., Wong, K. K., & Elkashlan, M. (2017). Spectral and energy efficiency of uplink D2D underlaid massive MIMO cellular networks. IEEE Transactions on Communications, 65(9), 3780–3793.CrossRefGoogle Scholar
  25. 25.
    Cui, S., Goldsmith, A., & Bahai, A. (2015). Energy-constrained modulation optimization. IEEE Transactions on Wireless Communications, 4(5), 2349–2360.Google Scholar
  26. 26.
    Wang, S., Shi, W., & Wang, C. (2015). Energy-efficient resource management in OFDM-based cognitive radio networks under channel uncertainty. IEEE Transactions on Communications, 63(9), 3092–3102.CrossRefGoogle Scholar
  27. 27.
    Xu, Y., Zhao, X., & Liang, Y. C. (2015). Robust power control and beamforming in cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 17(4), 1834–1857.CrossRefGoogle Scholar
  28. 28.
    Kang, X., Liang, Y. C., Nallanathan, A., Garg, H. K., & Zhang, R. (2009). Optimal power allocation for fading channels in cognitive radio networks: Ergodic capacity and outage capacity. IEEE Transactions on Wireless Communications, 8(2), 940–950.CrossRefGoogle Scholar
  29. 29.
    Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science, 13(7), 492–498.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Communication and Information EngineeringChongqing University of Posts and TelecommunicationsChongqingChina
  2. 2.Research Center of Medical Electronics and Information Technology EngineeringChongqing university of Posts and TelecommunicationsChongqingChina

Personalised recommendations