Wireless Personal Communications

, Volume 104, Issue 1, pp 21–36 | Cite as

Robust LCMV Beamformer for Direction of Arrival Mismatch Without Beam Broadening

  • Muhammad Zafar Ullah Khan
  • Aqdas Naveed Malik
  • Fawad Zaman
  • Ijaz Mansoor Qureshi


In this work, we propose a new and efficient algorithm to mitigate the signal look direction error problem in adaptive beamforming without broadening the main beam. The algorithm exploits a reference lobe in the region of signal look direction error. This reference lobe is the main beam of the generalized sidelobe canceller when there is no direction of arrival mismatch for the desired signal. The desired pattern is forced to follow the reference beam in the region of signal look direction error by utilizing multiple additional constraints. Simulations are performed in MATLAB to check and test the validity of the proposed algorithm on the basis of different scenarios.


Adaptive beamforming DOA mismatch GSC LCMV beamformer 


Compliance with Ethical Standards

Conflict of interest

All the authors declare that there is no conflict of interest.


  1. 1.
    Khan, Z. U., Naveed, A., Qureshi, I. M., & Zaman, F. (2011). Independent null steering by decoupling complex weights. IEICE Electronics Express, 8, 1008–1013.CrossRefGoogle Scholar
  2. 2.
    Sharma, V., Wajid, I., Gershman, A. B., Chen, H., & Lambotharan, S. (2008). Robust downlink beamforming using positive semi-definite covariance constraints. In IEEE international ITG workshop on smart antennas (WSA 2008) (pp. 36–41).Google Scholar
  3. 3.
    Byrne, D., O’Halloran, M., Jones, E., & Galvin, M. (2010). Transmitter-grouping robust capon beamforming for breast cancer detection. Progress in Electromagnetics Research, 108, 401–416.CrossRefGoogle Scholar
  4. 4.
    Gerlach, K., Shackelford, A. K., & Blunt, S. D. (2007). Combined multistatic adaptive pulse compression and adaptive beamforming for shared-spectrum radar. IEEE Journal of Selected Topics in Signal Processing, 1, 137–146.CrossRefGoogle Scholar
  5. 5.
    Akbar, S., Raja, M. A. Z., Zaman, F., et al. (2017). Design of bio-inspired heuristic techniques hybridized with sequential quadratic programming for joint parameters estimation of electromagnetic plane waves. Wireless Personal Communications, 96, 1475. Scholar
  6. 6.
    Zaman, F. (2017). Joint angle-amplitude estimation for multiple signals with L-structured arrays using bioinspired computing. Wireless Communications and Mobile Computing, 2017, 12. Scholar
  7. 7.
    Choi, Y. H. (2009). Null space projection based adaptive beamforming in the presence of array imperfections. IEICE Transactions on Communications, E92-B, 2762–2765.CrossRefGoogle Scholar
  8. 8.
    Elnashar, A., Elnoubi, S. M., & El-Mikati, A. (2006). Further study on robust adaptive beamforming with optimum diagonal loading. IEEE Transactions on Antennas and Propagation, 54, 3647–3658.CrossRefGoogle Scholar
  9. 9.
    Wang, W., & Wu, R. (2011). A novel diagonal loading method for robust adaptive beamforming. Progress in Electromagnetics Research C, 18, 245–255.CrossRefGoogle Scholar
  10. 10.
    Du, L., Li, J., & Stoica, P. (2010). Fully automatic computation of diagonal loading levels for robust adaptive beamforming. IEEE Transactions on Aerospace and Electronic Systems, 46, 449–458.CrossRefGoogle Scholar
  11. 11.
    Vorobyov, S. A., Gershman, A. B., & Luo, Z. Q. (2003). Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem. IEEE Transactions on Signal Processing, 52, 313–324.CrossRefGoogle Scholar
  12. 12.
    Chen, C. Y., & Vaidyanathan, P. P. (2007). Quadratically constrained beamforming robust against direction-of arrival mismatch. IEEE Transactions on Signal Processing, 55, 4139–4150.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Li, J., & Stoica, P. (2005). Robust adaptive beamforming. New York: Wiley-Interscience.CrossRefGoogle Scholar
  14. 14.
    Chang, A. C., Jen, C. W., & Su, I. J. (2007). Robust adaptive array beamforming based on independent component analysis with regularized constraints. IEICE Transactions on Communications, E90-B, 1791–1800.CrossRefGoogle Scholar
  15. 15.
    Tseng, C.-Y., & Griffiths, L. J. (1992). A unified approach to the design of linear constraints in minimum variance adaptive beamformers. IEEE Transactions on Antennas and Propagation, 40(12), 1533–1542.CrossRefGoogle Scholar
  16. 16.
    Griffiths, L. J., & Buckley, K. M. (1987). Quiescent pattern control in linearly constrained adaptive arrays. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-35, 917–926.CrossRefGoogle Scholar
  17. 17.
    Arqub, O. A., et al. (2016). Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Computing, 20.8, 3283–3302.CrossRefzbMATHGoogle Scholar
  18. 18.
    Arqub, O. A., et al. (2017). Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Computing, 21.23, 7191–7206.CrossRefzbMATHGoogle Scholar
  19. 19.
    Arqub, O. A. (2017). Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Computing and Applications, 28.7, 1591–1610.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Muhammad Zafar Ullah Khan
    • 1
  • Aqdas Naveed Malik
    • 1
  • Fawad Zaman
    • 2
  • Ijaz Mansoor Qureshi
    • 3
  1. 1.Department of Electronic EngineeringInternational Islamic UniversityIslamabadPakistan
  2. 2.Department of Electrical EngineeringCOMSATS University IslamabadIslamabadPakistan
  3. 3.Department of Electrical EngineeringAir UniversityIslamabadPakistan

Personalised recommendations