Advertisement

Image Retrieval Using CBIR Including Light Position Analysis

  • Hyun-Ho Han
  • Seuc-Ho Ryu
  • Gyoo-Soo Chae
  • Sang-Hun Lee
Article
  • 2 Downloads

Abstract

We propose a method for estimating the weight of the light source position to content-based image retrieval (CBIR) through retrieving image data. The image retrieval method makes use of a multi-dimensional descriptor expressing the features of the image. A multi-directional Gabor filter is then applied in order to extract the contour direction of the image, and a color correlation is applied in order to analyze the distribution of the position between the colors in the image. An HSV histogram and chromatic distribution information were obtained for the color composition analysis, and the light source position in the image was estimated for the main region extraction. The relative similarity between the images was measured through a relative comparison between each descriptor. In conventional image retrieval, there is a disadvantage in terms of the large computational intensity required, because the accuracy is degraded when simple information is used or when the result is estimated through a comparison of complex image components. However, the proposed method adds a light source location analysis element in order to ensure accurate retrieval. Image retrieval using the proposed method achieves an average retrieval accuracy of 85%, indicating that its reliability is superior to that of previously described methods.

Keywords

Image retrieval Color correlogram Color histogram Spatial context Gabor filter 

Notes

Acknowledgements

This work was supported by the research grant of the Kongju National University in 2017.

References

  1. 1.
    Liu, Z., Li, H., Zhou, W., Zhao, R., & Tian, Q. (2014). Contextual hashing for large-scale image search. IEEE Transactions on Image Processing, 23(4), 1606–1614.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Carson, C., Thomas, M., Belongie, S., Hellerstein, J. M., & Malik, J. (1999). Blobworld: A system for region-based image indexing and retrieval. In International conference on advances in visual information systems (pp. 509–517). Berlin: Springer.CrossRefGoogle Scholar
  3. 3.
    Liu, Z., Wang, S., Zheng, L., & Tian, Q. (2017). Robust ImageGraph: Rank-level feature fusion for image search. IEEE Transactions on Image Processing, 26(7), 3128–3141.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zheng, W., Qian, Y., & Tang, H. (2011). Dimensionality reduction with category information fusion and non-negative matrix factorization for text categorization. In International conference on artificial intelligence and computational intelligence (pp. 505–512). Berlin: Springer.CrossRefGoogle Scholar
  5. 5.
    Jing, Y., Covell, M., Tsai, D., & Rehg, J. M. (2013). Learning query-specific distance functions for large-scale web image search. IEEE Transactions on Multimedia, 15(8), 2022–2034.CrossRefGoogle Scholar
  6. 6.
    Guo, K., Ma, J., & Duan, G. (2014). DHSR: A novel semantic retrieval approach for ubiquitous multimedia. Wireless Personal Communications, 76(4), 779–793.CrossRefGoogle Scholar
  7. 7.
    Gionis, A., Indyk, P., & Motwani, R. (1999). Similarity search in high dimensions via hashing. In VLDB (Vol. 99, No. 6, pp. 518–529).Google Scholar
  8. 8.
    Park, J. H., Whangbo, T. K., & Kim, K. J. (2017). A novel image identifier generation method using luminance and location. Wireless Personal Communications, 94(1), 99–115.CrossRefGoogle Scholar
  9. 9.
    Cheng, J., Leng, C., Li, P., Wang, M., & Lu, H. (2014). Semi-supervised multi-graph hashing for scalable similarity search. Computer Vision and Image Understanding, 124, 12–21.CrossRefGoogle Scholar
  10. 10.
    Weiss, Y., Torralba, A., & Fergus, R. (2009). Spectral hashing. In Advances in neural information processing systems (pp. 1753–1760).Google Scholar
  11. 11.
    Li, J., & Wang, J. Z. (2003). Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(9), 1075–1088.CrossRefGoogle Scholar
  12. 12.
    Han, H. H., Lee, G. S., Lee, J. Y., Kim, J. S., & Lee, S. H. (2013). A new method to create depth information based on lighting analysis for 2D/3D conversion. Journal of Central South University, 20(10), 2715–2719.CrossRefGoogle Scholar
  13. 13.
    Han, S. H., Hong, Y. P., & Lee, S. H. (2012). Saliency map creation method robust to the contour of objects. Journal of Digital Convergence, 10(3), 173–178.Google Scholar
  14. 14.
    Park, J. H., Lee, G. S., & Lee, S. H. (2015). A study on the convergence technique enhanced GrabCut algorithm using color histogram and modified sharpening filter. Journal of the Korea Convergence Society, 6(6), 1–8.CrossRefGoogle Scholar
  15. 15.
    Wang, J., Kumar, S., & Chang, S. F. (2012). Semi-supervised hashing for large-scale search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(12), 2393–2406.CrossRefGoogle Scholar
  16. 16.
    Weldon, T., Higgins, W., & Dunn, D. (1996). Efficient Gabor filter design for texture segmentation. Pattern Recognition, 29(12), 2005–2015.CrossRefGoogle Scholar
  17. 17.
    Weldon, T., Higgins, W., & Dunn, D. (1996). Gabor filter design for multiple texture segmentation. Optical Engineering, 35(10), 2852–2863.CrossRefGoogle Scholar
  18. 18.
    Jain, A., & Farrokhnia, F. (1991). Unsupervised texture segmentation using Gabor filters. Pattern Recogn., 23(12), 1167–1186.CrossRefGoogle Scholar
  19. 19.
    Hofmann, T., Puzicha, J., & Buhmann, J. (1998). Unsupervised texture segmentation in a deterministic annealing framework. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 803–818.CrossRefGoogle Scholar
  20. 20.
    Mehrotra, R., Namuduri, K., & Ranganathan, N. (1992). Gabor filter-based edge detection. Pattern Recognition, 25(12), 1479–1493.CrossRefGoogle Scholar
  21. 21.
    Ghauri, S. A., Qureshi, I. M., & Malik, A. N. (2017). A novel approach for automatic modulation classification via hidden Markov models and Gabor features. Wireless Personal Communications, 96(3), 4199–4216.CrossRefGoogle Scholar
  22. 22.
    Taranto, C., Di Mauro, N., Ferilli, S., & Esposito, F. (2010). Approximate image color correlograms. In Proceedings of the 18th ACM international conference on multimedia (pp 1127–1130). ACM.Google Scholar
  23. 23.
    Zheng, Y., Grossman, M., Awate, S. P., & Gee, J. C. (2009). Automatic correction of intensity nonuniformity from sparseness of gradient distribution in medical images. In International conference on medical image computing and computer-assisted intervention (pp. 852–859). Berlin: Springer.CrossRefGoogle Scholar
  24. 24.
    Wang, J. Z., Li, J., & Wiederhold, G. (2001). “SIMPLIcity: Semantics-sensitive integrated matching for picture libraries. IEEE Transaction on Pattern Analysis and Machine Intelligence, 23(9), 947–963.CrossRefGoogle Scholar
  25. 25.
    Yuan, X., Yu, J., Qin, Z., & Wan, T. (2011). A SIFT-LBP image retrieval model based on bag of features. In IEEE international conference on image processing.Google Scholar
  26. 26.
    Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, 40(2), 99–121.CrossRefGoogle Scholar
  27. 27.
    Hiremath, P. S., & Pujari, J. (2007). Content based image retrieval using color, texture and shape features. In International conference on advanced computing and communications, 2007. ADCOM 2007 (pp. 780–784). IEEE.Google Scholar
  28. 28.
    Nagaraja, S., & Prabhakar, C. J. (2015). Low-level features for image retrieval based on extraction of directional binary patterns and its oriented gradients histogram. arXiv preprint arXiv:1503.03606.
  29. 29.
    Yu, F. X., Luo, H., & Lu, Z. M. (2011). Colour image retrieval using pattern co-occurrence matrices based on BTC and VQ. Electronics Letters, 47(2), 100–101.CrossRefGoogle Scholar
  30. 30.
    Lin, C. H., Chen, R. T., & Chan, Y. K. (2009). A smart content-based image retrieval system based on color and texture feature. Image and Vision Computing, 27(6), 658–665.CrossRefGoogle Scholar
  31. 31.
    Guo, J. M., & Prasetyo, H. (2015). Content-based image retrieval using features extracted from halftoning-based block truncation coding. IEEE Transactions on Image Processing, 24(3), 1010–1024.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Anandh, A., Mala, K., & Suganya, S. (2016). Content based image retrieval system based on semantic information using color, texture and shape features. In International conference on computing technologies and intelligent data engineering (ICCTIDE) (pp. 1–8). IEEE.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hyun-Ho Han
    • 1
  • Seuc-Ho Ryu
    • 2
  • Gyoo-Soo Chae
    • 3
  • Sang-Hun Lee
    • 4
  1. 1.Graduate SchoolKwangwoon UniversitySeoulKorea
  2. 2.Department of Game DesignKongju National UniversityKongjuKorea
  3. 3.Division of Information Communication EngineeringBaekseok UniversityCheonanKorea
  4. 4.Ingenium College of Liberal ArtsKwangwoon UniversitySeoulKorea

Personalised recommendations