Wireless Personal Communications

, Volume 103, Issue 3, pp 2259–2283 | Cite as

Link Adaptation Using Dynamically Allocated Thresholds and Power Control

  • Jayeeta Saha
  • Suvra Sekhar Das
  • Sandeep MukherjeeEmail author


Link adaptation technique, in which the modulation and coding used in a communication system is changed as per the channel conditions is a very well investigated topic for link throughput maximization with widespread application in wireless access networks. Most of the known algorithms dynamically adjust transmitter data rate by comparing instantaneous SNR with pre-defined SNR switching thresholds, in order to maximize throughput while maintaining the desired quality of service. However, the use of incorrect or stale values of these pre-defined switching thresholds often leads to selection of erroneous modulation and coding schemes resulting in unsatisfactory throughput or quality of service. This work introduces a novel scheme which achieves the maximum possible throughput while maintaining the target quality of service by dynamically acquiring the threshold values of different modulation and coding schemes used in the system for a given value of block error rate based on measurement at the receiver. This helps in keeping the threshold look up table up to date, so that proper threshold values for mode switching is present for all channel conditions. Also, a relationship between the throughput and the accuracy of the threshold value calculation is provided so that these can be optimized depending on the user requirements. The performance evaluation shows that the proposed system outperforms the conventional link adaptation in various operating scenarios where pre-determined look up tables are not available.


Link adaptation Dynamic link adaptation Power control Confidence intervals BLER based SNR 



  1. 1.
    Das, S. S., Rahman, M. I., Pongsuwanich, N., Wang, Y., Mahmood, N. H., Flores, C. L., et al. (April 2007). Influence of papr on link adaptation algorithms in ofdm systems. In IEEE 65th vehicular technology conference (pp. 1961–1965).Google Scholar
  2. 2.
    Das, S. S., Tariq, F., Rahman, M. I., Frederiksen, F. B., de Carvalho, E., & Prasad, R. (Sept 2007). Impact of nonlinear power amplifier on link adaptation algorithm of ofdm systems. In IEEE 66th vehicular technology conference (pp. 1303–1307).Google Scholar
  3. 3.
    Rappaport, T. (2001). Wireless communications: Principles and practice (2nd ed.). Upper Saddle River: Prentice Hall PTR.zbMATHGoogle Scholar
  4. 4.
    Das, S. S., De Carvalho, E., & Prasad, R. (2008). Performance analysis of ofdm systems with adaptive sub carrier bandwidth. IEEE Transactions on Wireless Communications, 7(4), 1117–1122.CrossRefGoogle Scholar
  5. 5.
    Prasad, R., & Das, S. S. (2010). Adaptive PHY-MAC design for broadband wireless systems. Wharton: River Publishers.Google Scholar
  6. 6.
    Castanet, L., Bolea-Alamanac, A., & Bousquet, M. (May 2003). Interference and fade mitigation techniques for ka and q/v band satellite communication systems. In COST 272-280 international workshop on satellite communications from fade mitigation to service provision, Noordwijk, The Netherlands.Google Scholar
  7. 7.
    Mukherjee, S., De Sanctis, M., Rossi, T., Cianca, E., Ruggieri, M., & Prasad, R. (2010). On the optimization of DVB-S2 links in EHF bands. IEEE Aerospace Conference (p. 2010). Montana: Big Sky.Google Scholar
  8. 8.
    Ball, C. F., Humburg, E., & Treml, F. (Sept 2006). Different ofdm link level performance under the presence of co-channel interference and noise In IEEE international symposium on personal, indoor and mobile radio communications (pp. 1–6).Google Scholar
  9. 9.
    Wong, C. Y., Cheng, R. S., Lataief, K. B., & Murch, R. D. (1999). Multiuser ofdm with adaptive subcarrier, bit, and power allocation. IEEE Journal on Selected Areas in Communications, 17(10), 1747–1758.CrossRefGoogle Scholar
  10. 10.
    Ibrahim, A. S., & Liu, K. J. R. (2010). Mitigating channel estimation error with timing synchronization tradeoff in cooperative communications. IEEE Transactions on Signal Processing, 58(1), 337–348.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wang, F., Zhang, T., Feng, C., & Yu-Ngok, R.L. (Oct 2011). Limited feedback scheme in the presence of feedback delay using kalman filter. In IET international conference on communication technology and application (pp. 253–257).Google Scholar
  12. 12.
    Zeleny, J., Dehos, C., Rosson, P., & Kaiser, A. (2012). Receiver-aided predistortion of power amplifier non-linearities in cellular networks. IET Science, Measurement Technology, 6(3), 168–175.CrossRefGoogle Scholar
  13. 13.
    Dahat, P. A., & Das, S. S. (2015). Qos enhancement in ofdm based systems under transceiver impairments. Physical Communication, 16, 25–36.CrossRefGoogle Scholar
  14. 14.
    Stallo, C., Mukherjee, S., Cianca, E., Lucente, M., Rossi, T., De Sanctis, M., et al. (2010). Performance analysis of an IR-UWB transceiver architecture for multi-gigabit/s LOS links in W band. In IEEE 21st international symposium on personal indoor and mobile radio communications (PIMRC).Google Scholar
  15. 15.
    Suri, N., Hugue, M. M., & Walter, C. J. (1994). Synchronization issues in real-time systems. Proceedings of the IEEE, 82(1), 41–54.CrossRefGoogle Scholar
  16. 16.
    Sesia, S., Toufik, I., & Baker, M. (Eds.). (2009). LTE—the UMTS long term evolution–Theory and practice. Hoboken: Wiley.Google Scholar
  17. 17.
    Holma, H., & Toskala, A. (2010). LTE for UMTS: Evolution to LTE-advanced. Hoboken: Wiley.Google Scholar
  18. 18.
    Das, S. S., Rahman, M. I., Wang, Y., Frederiksen, F. B., & Prasad, R. (September 2007). Hybrid Strategies for link adaptation exploiting several degrees of freedom in OFDM based broadband wireless systems. In Vehicular technology conference, 2007. VTC-2007 Fall. 2007 IEEE 66th (pp. 1807–1811).Google Scholar
  19. 19.
    Mukherjee, S., De Sanctis, M., Rossi, T., Cianca, E., Ruggieri, M., & Prasad, R. (2010). Mode switching algorithms for DVB-S2 links in W band. In IEEE global communications conference (GLOBECOM), Florida, USA.Google Scholar
  20. 20.
    METIS. (April 2013). Scenarios, requirement and kpis for 5g mobile and wireless systems. In ICT-317669(D1.1).Google Scholar
  21. 21.
    Fettweis, G. P. (2014). The tactile internet: Applications and challenges. IEEE Vehicular Technology Magazine, 9(1), 64–70.CrossRefGoogle Scholar
  22. 22.
    Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., et al. (2014). Scenarios for 5g mobile and wireless communications: The vision of the metis project. IEEE Communications Magazine, 52(5), 26–35.CrossRefGoogle Scholar
  23. 23.
    Wang, Y., Wang, Q., Zeng, Z., Zheng, G., & Zheng, R. (Nov 2011). Wicop: Engineering wifi temporal white-spaces for safe operations of wireless body area networks in medical applications. In IEEE real-time systems symposium (RTSS), (pp. 170–179).Google Scholar
  24. 24.
    Fettweis, G. (2012). A 5G wireless communications vision. Microwave Journal, 55(12), 24–36.Google Scholar
  25. 25.
    Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49.CrossRefGoogle Scholar
  26. 26.
    Dahat, P. A., & Das, S. S. (March 2015). Performance analysis of device-to-device communications in cellular networks under varying load conditions. In Wireless personal communications, (pp. 1–19).Google Scholar
  27. 27.
    Lioumpas, A. S., Karagiannidis, G. K., & Michalopoulos, D. S. (Nov 2009). Adaptive M-PSK communications in the absence of channel gain estimation (pp. 1–6).Google Scholar
  28. 28.
    Nakamura, M., Awad, Y., & Vadgama, S. (oct. 2002). Adaptive control of link adaptation for high speed downlink packet access (hsdpa) in W-CDMA (Vol. 2, pp. 382–386).Google Scholar
  29. 29.
    Takeda, D., Chow, Y. C., Strauch, P., & Tsurumi, H. (Sept. 2004). Threshold controlling scheme for adaptive modulation and coding system. In 15th IEEE international symposium on personal, indoor and mobile radio communications (Vol. 2, pp. 1351–1355).Google Scholar
  30. 30.
    Cavalcante, A. M., Bazzo, J. J., Souza, E. B., de Sousa, M. J., & Kuru, L. (2010). System-level analysis of outer loop link adaptation on mobilewimax systems.Google Scholar
  31. 31.
    Morales-Jimenez, D., Sanchez, J. J., Gomez, G., Aguayo-Torres, M. C., & Entrambasaguas, J. T. (December 2009). Imperfect adaptation in next generation ofdma cellular systems. 3(1).Google Scholar
  32. 32.
    Touheed, H., Quddus, A. U., & Tafazolli, R. (2008). An improved link adaptation scheme for high speed downlink packet access. In IEEE 67th vehicular technology conference (pp. 2051–2055).Google Scholar
  33. 33.
    Hosein, P. (April 2009). Adaptive algorithm for mapping channel quality information to modulation and coding schemes. In IEEE 69th vehicular technology conference, 2009 (pp. 1–3).Google Scholar
  34. 34.
    Gozalvez, J., & Dunlop, J. (2002). On the dynamics of link adaptation updating periods for packet switched systems (Vol. 23, pp. 137–145). Dordrecht: Kluwer Academic Publishers.Google Scholar
  35. 35.
    Nam, S, Park, G, Lee, J, Kang, C, & Hong D (2005). Adaptive MCS level selection scheme for HSDPA in W-CDMA system. In IEEE 62nd vehicular technology conference (Vol. 4, pp. 2482–2484).Google Scholar
  36. 36.
    Das, S.S., Mondal, S., Saha, J., & Bandyopadhyay, K. (may 2011). Comparison of rain fade mitigation techniques using crc and embedded pilot methods in ka-band satellite links. In IEEE 73rd vehicular technology conference (VTC Spring) (pp. 1–5).Google Scholar
  37. 37.
    Choudhury, S., & Gibson, J. D. (2006). Joint phy/mac based link adaptation for wireless lans with multipath fading. IEEE Wireless Communications and Networking Conference, 2, 757–762.Google Scholar
  38. 38.
    Castaneda, M., Ivrlac, M. T., Nossek, J. A., Viering, I., & Klein, A. (2008). Outdated uplink adaptation due to changes in the scheduling decisions in interfering cells. IEEE International Conference on Communications, 2008, 4948–4952.Google Scholar
  39. 39.
    Reddy, S. B., Yucek, T., & Arslan, H. (oct. 2003). An efficient blind modulation detection for adaptive ofdm systems. In IEEE 58th vehicular technology conference, 2003. VTC 2003-Fall (Vol. 3, pp. 1895–1899)Google Scholar
  40. 40.
    Falahati, S., & Svensson, A. (1999). Hybrid type-ii arq schemes with adaptive modulation systems for wireless channels. In IEEE Vehicular Technology Conference (pp. 2691–2695).Google Scholar
  41. 41.
    Honkasalo, H., Pehkonen, K., Niemi, M. T., & Leino, A. T. (2002). Wcdma and wlan for 3g and beyond. IEEE Wireless Communications magazine, 9(2), 14–18.CrossRefGoogle Scholar
  42. 42.
    Astely, D., Dahlman, E., Furuskar, A., Jading, Y., Lindstrom, M., & Parkvall, S. (2009). Lte: the evolution of mobile broadband. IEEE Communications Magazine, 47(4), 44–51.CrossRefGoogle Scholar
  43. 43.
    Chung, S. T., & Goldsmith, A. J. (2001). Degrees of freedom in adaptive modulation: a unified view. IEEE Transactions on Communications, 49(9), 1561–1571.CrossRefGoogle Scholar
  44. 44.
    Novakovic, Dejan M., & Dukic, M. L. (2000). Evolution of the power control techniques for ds-cdma toward 3g wireless communication systems. IEEE Communications Surveys Tutorials, 3(4), 2–15.CrossRefGoogle Scholar
  45. 45.
    Musku, M. R., Chronopoulos, A. T., & Popescu, D. C. (2005). A simulation comparison of distributed power control algorithms for wireless communications. In International symposium on signals, circuits and systems (Vol. 1, pp. 263–266)Google Scholar
  46. 46.
    Mayers, A., Benavidez, P., Raju, G., Akopian, D., & Jamshidi, M. (2013). A novel ber-feedback power control algorithm for personal area network devices. In IEEE international systems conference (pp. 370–375).Google Scholar
  47. 47.
    Kumar, S., Yates, R. D., & Holtzman, J. (1995). Power control based on bit error rate measurements. In MILCOM (Vol. 20.1, pp. 1–4).Google Scholar
  48. 48.
    Lv, L., Zhu, S., & Dong, S. (2003). Fast convergence distributed power control algorithm for wcdma systems. IEE Proceedings on Communications, 150(2), 134–140.CrossRefGoogle Scholar
  49. 49.
    Ling, L., Zhu, S., & Wang, Y. (2000). A distributed power control algorithm for wideband cdma cellular mobile systems. In International conference on communication technology (Vol. 1, pp. 954–957)Google Scholar
  50. 50.
    Yates, R. D. (1995). A framework for uplink power control in cellular radio systems. IEEE Journal on Selected Areas in Communications, 13(7), 1341–1347.CrossRefGoogle Scholar
  51. 51.
    Mandhare, G. P., & Ghrayeb, A. (2006). Wlc04-1: A distributed ber-based power control algorithm for WCDMA systems. In IEEE global telecommunications conference, (pp. 1–5).Google Scholar
  52. 52.
    ITU-R M.2135. (2008). Guidelines for evaluation of radio interface technologies for IMT-advanced. Technical report.Google Scholar
  53. 53.
    3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); LTE coverage enhancements (Release 11) 3GPP TR 36.824 V11.0.0 (2012-06). Technical report (2012).Google Scholar
  54. 54.
    Ribeiro, M. I. (2004). Gaussian probability density functions: Properties and error characterization. Lisboa: Institute for Systems and Robotics.Google Scholar
  55. 55.
    Proakis, J. G., & Salehi, M. (2008). Digital communication, chapter 3. New York: McGraw Hill.Google Scholar
  56. 56.
    Rappaport, T. S., et al. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks -with a focus on propagation models. IEEE Transactions on Antennas and Propagation, 65(12), 6213–6230.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.G. S. Sanyal School of TelecommunicationsIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations