Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

OFDM-Based TVWS-IEEE Standards: A Survey of PHY and Cognitive Radio Features

  • 223 Accesses

  • 1 Citations

Abstract

Cognitive radio (CR) has been recognized as future prospect for efficient and dynamic allocation of bandwidth among users of which dynamic spectrum access is an important aspect focusing on identification and opportunistic utilization of vacant spectrum in television broadcasting licensed bands, known as television white spaces (TVWS). TVWS has been selected by numerous IEEE standards spanning diverse operating zones for implementing CR technology. Specifically, we focus our attention to IEEE 802.22, IEEE 802.11af and IEEE 802.15.4m standards operating in TVWS pertaining to regional, local and personal area networks respectively. The PHY layer in each of these standards is depending on orthogonal frequency division multiplexing (OFDM) for spectrum-wise efficient communication as well as dynamic frequency allocation. Pertinent OFDM design challenges corresponding to IEEE standards in TVWS are revealed. PHY layer structure and cognitive techniques employed in cognition-aware IEEE standards in TVWS are reviewed in detail. Lastly, open research issues and implementation challenges for TVWS IEEE standards are highlighted.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    U.S. Department of Commerce, National Telecommunications and Information Administration, Office of Spectrum Management. (2003). U.S. frequency allocation chart, 2003. http://www.ntia.doc.gov/files/ntia/publications/2003-allochrt.pdf.

  2. 2.

    Department of Telecommunications, Ministry of Communications & Information Technology, Government of India. (2011). National frequency allocation plan—2011. http://wpc.dot.gov.in/Docfiles/National Frequency Allocation Plan-2011.pdf.

  3. 3.

    Federal Communications Commission, Washington. D.C. (2002). Spectrum policy task force report, FCC spectrum policy task force, ET Docket no. 02-135. https://transition.fcc.gov/sptf/files/SEWGFinalReport_1.pdf.

  4. 4.

    IEEE Standard for WirelessMAN-Advanced Air Interface for Broadband Wireless Access Systems. (2012). IEEE 802.16.1-2012.

  5. 5.

    IEEE DySPAN. (2015). IEEE communications society. http://dyspan2015.ieee-dyspan.org.

  6. 6.

    Sum, C., Villardi, G. P., et al. (2013). Cognitive communication in TV white spaces: An overview of regulations, standards, and technology. IEEE Communications Magazine, 51(7), 138–145.

  7. 7.

    Mitola III, J. (1999). Cognitive radio: Model-based competence for software radios. Licentiate Thesis, KTH Royal Institute of Technology.

  8. 8.

    Stevenson, C., Chouinard, G., Lei, Z., Hu, W., Shellhammer, S., & Caldwell, W. (2009). IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Communications Magazine, 47(1), 130–138.

  9. 9.

    Grønsund, P., Pawelczak, P., Park, J., & Cabric, D. (2014). System level performance of IEEE 802.22-2011 with sensing-based detection of wireless microphones. IEEE Communications Magazine, 52(1), 200–209.

  10. 10.

    Sherman, M., Mody, A. N., Martinez, R., Rodriguez, C., & Reddy, R. (2008). IEEE standards supporting cognitive radio and networks, dynamic spectrum access, and coexistence. IEEE Communications Magazine, 46(7), 72–79.

  11. 11.

    Granelli, F., Pawelczak, P., Prasad, R. V., et al. (2010). Standardization and research in cognitive and dynamic spectrum access networks: IEEE SCC41 efforts and other activities. IEEE Communications Magazine, 48(1), 71–79.

  12. 12.

    IEEE Standard for Wireless Regional Area Networks (WRAN)—Part 22. (2011). Cognitive wireless RAN medium access control (MAC) and physical layer (PHY) specifications: Policies and procedures for operation in the TV bands. IEEE Std. 802.22-2011.

  13. 13.

    IEEE Standard for Wireless Regional Area Networks (WRAN)—Part 22. (2015). Cognitive wireless RAN medium access control (MAC) and physical layer (PHY) specifications: Amendment 2: Enhancement for broadband services and monitoring applications. IEEE Std. 802.22b-2015.

  14. 14.

    IEEE Standard for Local and Metropolitan Area Networks—Part 11. (2013). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 5: Television white spaces (TVWS) operation. IEEE Std. 802.11af-2013.

  15. 15.

    IEEE Standard for Local and Metropolitan Area Networks—Part 15.4. (2014). Low-rate wireless personal area networks (LR-WPANs) amendment 6: TV white space between 54 and 862 MHz physical layer. IEEE Std. 802.15.4m-2014.

  16. 16.

    IEEE Standard for Local and Metropolitan Area Networks—Part 15.4. (2011). Low-rate wireless personal area networks (LR-WPANs). IEEE Std. 802.15.4-2011.

  17. 17.

    Brown, T. X., & Sicker, D. C. (2007). Can cognitive radio support broadband wireless access? In Proceedings of IEEE DySPAN (pp. 123–132).

  18. 18.

    Chang, R. W. (1966). Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell System Technical Journal, 45(10), 1775–1796.

  19. 19.

    Weinstein, S. B., & Ebert, P. M. (1971). Data transmission by frequency-division multiplexing using the discrete fourier transform. IEEE Transactions on Communication Technology, 19(5), 628–634.

  20. 20.

    Peled, R., & Ruiz, A. (1980). Frequency domain data transmission using reduced computational complexity algorithms. In Proceedings of IEEE ICASSP (pp. 964–967).

  21. 21.

    Prasad, R. (2004). OFDM for wireless communication systems. Artech House, Inc. ISBN: 1-58053-796-0.

  22. 22.

    Wong, C. Y., Cheng, R. S., Letaief, K. B., & Murch, R. D. (1999). Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE Journal on Selected Areas in Communications, 17(10), 1747–1758.

  23. 23.

    Mahmoud, H. A., Yucek, T., & Arslan, H. (2009). OFDM for cognitive radio: Merits and challenges. IEEE Wireless Communications, 16(2), 6–15.

  24. 24.

    Weiss, T. A., & Jondral, F. K. (2004). Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine, 42(3), S8–14.

  25. 25.

    Bogucka, H., Kryszkiewicz, P., & Kliks, A. (2015). Dynamic spectrum aggregation for future 5G communications. IEEE Communications Magazine, 53(5), 35–43.

  26. 26.

    Sutton, P., Ozgul, B., Macaluso, I., & Doyle, L. (2010). OFDM pulse-shaped waveforms for dynamic spectrum access networks. In Proceedings of IEEE DYSPAN (pp. 1–2).

  27. 27.

    Mahmoud, H. A., & Arslan, H. (2008). Sidelobe suppression in OFDM-based spectrum sharing systems using adaptive symbol transition. IEEE Communications Letters, 12(2), 133–135.

  28. 28.

    Rahmatallah, Y., & Mohan, S. (2013). Peak-to-average power ratio reduction in OFDM systems: A survey and taxonomy. IEEE Communications Surveys & Tutorials, 15(4), 1567–1592.

  29. 29.

    Fettweis, G., Krondorf, M., & Bittner, S. (2009). GFDM—Generalized frequency division multiplexing. In Proceedings of IEEE VTC Spring (pp. 1–4).

  30. 30.

    Yucek, T., & Arslan, H. (2008). Delay spread and time dispersion estimation for adaptive OFDM systems. IEEE Transactions on Vehicular Technology, 57(3), 1715–1722.

  31. 31.

    Chowdhury, K. R., & Akyildiz, I. F. (2011). OFDM-based common control channel design for cognitive radio ad hoc networks. IEEE Transactions on Mobile Computing, 10(2), 228–238.

  32. 32.

    Lin, Z., Ghosh, M., & Demir, A. (2013). A comparison of MAC aggregation versus PHY bonding for WLANs in TV white spaces. In Proceedings of IEEE PIMRC (pp. 1829–1834).

  33. 33.

    Joshi, S., Pawełczak, P., Cabric, D., & Villasenor J. (2012). Performance of channel bonding for opportunistic spectrum access networks. In Proceedings of IEEE Globecom (pp. 1676–1681).

  34. 34.

    Sasaki, S. & Uchida, T. (2014). Data rate on MD-TCM. IEEE P802.22 Working Group, Doc.:IEEE802.22-14/0142r0. https://mentor.ieee.org/802.22/dcn/14/22-14-0142-00-000b-data-rate-on-md-tcm.ppt.

  35. 35.

    Wei, L. F. (1987). Trellis-coded modulation with multidimensional constellations. IEEE Transactions on Information Theory, 33(4), 483–531.

  36. 36.

    Popescu, V., Fadda, M., & Murroni, M. (2016). Performance analysis of IEEE 802.22 wireless regional area network in the presence of digital video broadcasting—second generation terrestrial broadcasting services. IET Communications, 10(8), 922–928.

  37. 37.

    IEEE Standard for Local and Metropolitan Area Networks—Part 11. (2013). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 4: Enhancements for very high throughput for operation in bands below 6 GHz. IEEE Std. 802.11ac-2013.

  38. 38.

    IEEE Standard for Local and Metropolitan Area Networks—Part 11. (2012). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std. 802.11-2012.

  39. 39.

    Macit, M. C., Senol, H., & Erkucuk, S. (2015). Performance investigation of IEEE 802.11af systems under realistic channel conditions. In Proceedings of IEEE IWCMC (pp. 431–435).

  40. 40.

    Sum, C., Zhou, M., Lu, L., Funada, R., Kojima, F., & Harada, H. (2012). IEEE 802.15.4m: The first low rate wireless personal area networks operating in TV white space. In Proceedings of IEEE ICoN (pp. 326–332).

  41. 41.

    Sum, C., Lu, L., Zhou, M. T., Kojima, F., & Harada, H. (2013). Design considerations of IEEE 802.15.4m low-rate WPAN in TV white space. IEEE Communications Magazine, 51(4), 74–82.

  42. 42.

    Ko, G., Franklin, A. A., You, S. J., Pak, J. S., Song, M. S., & Kim, C. J. (2010). Channel management in IEEE 802.22 WRAN systems. IEEE Communications Magazine, 48(9), 88–94.

  43. 43.

    Flores, A. B., Guerra, R. E., Knightly, E. W., Ecclesine, P., & Pandey, S. (2013). IEEE 802.11af: A standard for TV white space spectrum sharing. IEEE Communications Magazine, 51(10), 92–100.

  44. 44.

    Khattab, A., & Bayoumi, M. A. (2015). An overview of IEEE standardization efforts for cognitive radio networks. In Proceedings of IEEE ISCAS (pp. 982–985).

  45. 45.

    Han, N., Shon, S., Chung, J. H., & Kim J. M. (2006). Spectral correlation based signal detection method for spectrum sensing in IEEE 802.22 WRAN systems. In Proceedings of IEEE ICACT (pp. 1765–1770).

  46. 46.

    Kim, H., Kim, J., Yang, S., et al. (2007). An effective MIMO-OFDM transmission scheme for IEEE 802.22 WRAN systems. In Proceedings of IEEE CrownCom (pp. 394–399).

  47. 47.

    Chen, H. S., Gao, W., & Daut, D. G. (2007). Signature based spectrum sensing algorithms for IEEE 802.22 WRAN. In Proceedings of IEEE ICC (pp. 6487–6492).

  48. 48.

    Hu, W., Willkomm, D., Abusubaih, M., Gross, J., et al. (2007). Dynamic frequency hopping communities for efficient IEEE 802.22 operation. IEEE Communications Magazine, 45(5), 80–87.

  49. 49.

    Al-Zubi, R., Siam, M. Z., & Krunz, M. (2009). Coexistence problem in IEEE 802.22 wireless regional area networks. In Proceedings of IEEE GLOBECOM (pp. 1–6).

  50. 50.

    Po, K., & Takada, J. (2008). Conservative protection criteria for TV broadcasting services from IEEE 802.22 WRAN. In Proceedings of IEEE CrownCom (pp. 1–4).

  51. 51.

    Sengupta, S., Brahma, S., Chatterjee, M., & Shankar, S. (2007). Enhancements to cognitive radio based IEEE 802.22 air-interface. Proceedings of IEEE ICC (pp. 5155–5160).

  52. 52.

    Buchwald, G. J., Kuffner, S. L., Ecklund, L. M., Brown, M., & Callaway, E. H. (2008). The design and operation of the IEEE 802.22.1 disabling beacon for the protection of TV whitespace incumbents. In Proceedings of IEEE DySPAN (pp. 1–6).

  53. 53.

    Hu, W., Gerla, M., Vlantis, G. A., & Pottie, G. J. (2008). Efficient, flexible, and scalable inter-network spectrum sharing and communications in cognitive IEEE 802.22 networks. In Proceedings of IEEE CogART (pp. 1–5).

  54. 54.

    Lim, S., Jung, H., & Song, M. S. (2009). Cooperative spectrum sensing for IEEE 802.22 WRAN system. In Proceedings of IEEE ICCCN (pp. 1–5).

  55. 55.

    Yu-chun, W., Haiguang, W., & Zhang, P. (2009). Protection of wireless microphones in IEEE 802.22 cognitive radio networks. In Proceedings of IEEE ICCW (pp. 1–5).

  56. 56.

    Murty, R., Chandra, R., Moscibroda, T., & Bahl, P. (2012). Senseless: A database-driven white spaces network. IEEE Transactions on Mobile Computing, 11(2), 189–203.

  57. 57.

    Shi, H., Prasad, R. V., Niemegeers, I. G. M. M., & Rahim, A. (2014). Multi-channel management for D2D communications in IEEE 802.22 WRANs. In Proceedings of IEEE ICC (pp. 1514–1519).

  58. 58.

    Matsumura, T., & Harada, H (2012). Prototype of UHF converter for TV white-space utilization. In Proceedings of IEEE WPMC (pp. 123–127).

  59. 59.

    Goulianos, A. A., Abdullah, N. F., Kong, D., et al. (2014). Evaluation of 802.11 and LTE for automotive applications. In Proceedings of IEEE VTC fall (pp. 1–5).

  60. 60.

    Lan, Z., Mizutani, K., Villardi, G., & Harada, H. (2013). Design and implementation of a Wi-Fi prototype system in TVWS based on IEEE 802.11af. In Proceedings of IEEE WCNC (pp. 750–755).

  61. 61.

    Mizutani, K., Lan, Z., Funada, R., & Harada, H. (2013). IEEE802.11af with partial subcarrier system for effective use of TV white spaces. In Proceedings of IEEE ICCW (pp. 1255–1259).

  62. 62.

    Mizutani, K., Ishizu, K., Matsumura, T., et al. (2015). IEEE 802.11af indoor experiment in UK Ofcom TVWS trial pilot program. In Proceedings of IEEE VTC spring (pp. 1–5).

  63. 63.

    Holland, O., Sastry, N., Ping, S., Knopp, R., et al. (2014). A series of trials in the UK as part of the Ofcom TV white spaces pilot. In 1st international workshop on cognitive cellular systems (CCS), 2014 (pp. 1–5).

  64. 64.

    Holland, O., Ping, S., Sastry, N., Chawdhry, et al. (2015). Some initial results and observations from a series of trials within the Ofcom TV white spaces pilot. In IEEE vehicular technology conference (pp. 1–7).

  65. 65.

    Sawada, H., Mizutani, K., Ishizu, K., et al. (2015). Path loss and throughput estimation and models for an IEEE 802.11af prototype. In Proceedings of IEEE VTC spring (pp. 1–5).

  66. 66.

    Ishizu, K., Hasegawa, K., Mizutani, K., et al. (2014). Field experiment of long-distance broadband communications in TV white space using IEEE 802.22 and IEEE 802.11af. In Proceedings of IEEE WPMC (pp. 468–473).

  67. 67.

    Sum, C., Kojima, F., & Harada, H. (2013). Energy consumption evaluation for power saving mechanisms in recent IEEE 802.15.4 low-rate wireless personal area networks. In Proceedings of IEEE ICC (pp. 4449–4454).

  68. 68.

    Jang, I., & Hwang, K. (2014). Multi-channel cluster PAN for TVWS band. In Proceedings of IEEE ICNC (pp. 1076–1080).

  69. 69.

    Rabarijaona, V. H., Kojima, F., & Harada, H. (2014). Hierarchical mesh tree protocol for efficient multi-hop data collection. In Proceedings of IEEE WCNC (pp. 2008–2013).

  70. 70.

    B. Kim, Lee, S., Lee, S. S., & Choi, S. (2015). Preamble generation method to improve timing estimation for OFDM system using training sequence. In Proceedings of IEEE ICCE (pp. 142–143).

  71. 71.

    Kim, J., Han, J., Kol, Y. B., & Filali, F. (2015). Interleaving-based orphan channel scanning for the IEEE 802.15.4m in TVWS smart grid networks. Proceedings of IEEE international conference on ubiquitous and future networks (pp. 89–94).

  72. 72.

    Sum, C., Zhou, M. T., Lu, L., Kojima, F., & Harada, H. (2014). Performance and coexistence analysis of multiple IEEE 802 WPAN/WLAN/WRAN systems operating in TV white space. In Proceedings of IEEE DySPAN (pp. 145–148).

  73. 73.

    Ma, J., Harada, H., & Kojima, F. (2015). Proposal and performance evaluation of TVWS-Wi-SUN system. Proceedings of IEEE PIMRC (pp. 2002–2007).

Download references

Author information

Correspondence to Ajit Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Salwe, S.S., Naik, K.K. et al. OFDM-Based TVWS-IEEE Standards: A Survey of PHY and Cognitive Radio Features. Wireless Pers Commun 103, 1725–1764 (2018). https://doi.org/10.1007/s11277-018-5877-0

Download citation

Keywords

  • Cognitive radio
  • Geolocation
  • IEEE standards
  • OFDM
  • Physical layer
  • TV white spaces